With their genome sequenced, Anopheles gambiae mosquitoes now serve as a powerful tool for basic research in comparative, evolutionary and developmental biology. The knowledge generated by these studies is expected to reveal molecular targets for novel vector control and pathogen transmission blocking strategies. Comparisons of gene-expression profiles between adult male and nonblood-fed female Anopheles gambiae mosquitoes revealed that roughly 22% of the genes showed sex-dependent regulation. Blood-fed females switch the majority of their metabolism to blood digestion and egg formation within 3 h after the meal is ingested, in detriment to other activities such as flight and response to environment stimuli. Changes in gene expression are most evident during the first, second and third days after a blood meal, when as many as 50% of all genes showed significant variation in transcript accumulation. After laying the first cluster of eggs (between 72 and 96 h after the blood meal), mosquitoes return to a nongonotrophic stage, similar but not identical to that of 3-dayold nonblood-fed females. Ageing and / or the nutritional state of mosquitoes at 15 days after a blood meal is reflected by the down-regulation of ∼ ∼ ∼ ∼ 5% of all genes. A full description of the large number of genes regulated at each analysed time point and each biochemical pathway or biological processes in which they are involved is not possible within the scope of this contribution. Therefore, we present descriptions of groups of genes displaying major differences in transcript accumulation during the adult mosquito life. However, a publicly available searchable database (http://www. angagepuci.bio.uci.edu / ) has been made available so that detailed analyses of specific groups of genes based on their descriptions, functions or levels of gene expression variation can be performed by interested investigators according to their needs.
A microarray analysis of 14 900 genes of the malaria vector mosquito, Anopheles gambiae, shows that as many as 33% (4924) of their corresponding transcription products vary in abundance within 24 h after a blood meal. Approximately half (2388) of these products increase in their accumulation and the remainder (2536) decrease. Expression dynamics of 80% of the genes analysed by expressed sequence tag (EST) projects reported previously are consistent with the observations from this microarray analysis. Furthermore, the microarray analysis is more sensitive in detecting variation in abundance of gene products expressed at low levels and is more sensitive overall in that a greater number of regulated genes are detected. Major changes in transcript abundance were seen in genes encoding proteins involved in digestion, oogenesis and locomotion. The microarray data and an electronic hyperlinked version of all tables are available to the research community at http://www.angagepuci.bio.uci.edu/1/.
Female Anopheles gambiae mosquitoes respond to odours emitted from humans in order to find a blood meal, while males are nectar feeders. This complex behaviour is controlled at several levels, but is probably initiated by the interaction of various molecules in the antennal sensilla. Important molecules in the early odour recognition events include odourant binding proteins (OBPs), which may be involved in odour molecule transport, odourant receptors (ORs) that are expressed in the chemosensory neurones and odour degrading enzymes (ODEs). To obtain a better understanding of the expression patterns of genes that may be involved in host odour reception in females, we generated a custom microarray to study their steady state mRNA levels in chemosensory tissues, antennae and palps. These results were supported by quantitative RT PCR. Our study detected several OBPs that are expressed at significantly higher levels in antennae and palps of females vs. males, while others showed the opposite expression pattern. Most OBPs are slightly down-regulated 24 h after blood feeding, but some, especially those with higher expression levels in males, are up-regulated in blood-fed females, suggesting a shift in blood-fed females from human host seeking to nectar feeding.
A MIL-53(Fe) analogue was successfully synthesized by a HF free-solvothermal method.
Telomeres are generally considered heterochromatic. On the basis of DNA composition, the telomeric region of Drosophila melanogaster contains two distinct subdomains: a subtelomeric region of repetitive DNA, termed TAS, and a terminal array of retrotransposons, which perform the elongation function instead of telomerase. We have identified several P-element insertions into this retrotransposon array and compared expression levels of transgenes with similar integrations into TAS and euchromatic regions. In contrast to insertions in TAS, which are silenced, reporter genes in the terminal HeT-A, TAHRE, or TART retroelements did not exhibit repressed expression in comparison with the same transgene construct in euchromatin. These data, in combination with cytological studies, provide evidence that the subtelomeric TAS region exhibits features resembling heterochromatin, while the terminal retrotransposon array exhibits euchromatic characteristics. D NA sequences at the ends of eukaryotic chromosomes are the products of a telomere elongation process. In most eukaryotes, these sequences are simple repeating units that are synthesized by telomerase, but in Drosophila melanogaster they are tandem head-to-tail arrays of three non-long terminal repeat retrotransposons, HeT-A, TAHRE, and TART ( Despite these differences, a common feature of eukaryotic chromosomes is a region of complex repeats located adjacent to the terminal sequences. These complex repeats are referred to as subtelomeric regions, or telomere-associated sequences (TAS), and differ in sequence, structure, and length among species and among telomeres within an individual (Pryde et al. 1997). The repetitive nature and the high density of transposable elements in these subtelomeric regions (Mefford and Trask 2002) are reminiscent of heterochromatin. In D. melanogaster, TAS consist of several kilobases of complex repeats, which exhibit similarities between the different chromosome ends. Sequences of the 2L and X TAS regions have been described in detail (Karpen and Spradling 1992;Walter et al. 1995), and in situ hybridizations to polytene chromosomes showed that 2L TAS share homology with 3L TAS, while X TAS share homology with 2R and 3R TAS. The 2L TAS appear to be 15 kb in length and composed of relatively simple
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.