BackgroundIn mechanical ventilation, there are still some challenges to turn a modern ventilator into a fully reactive device, such as lack of a comprehensive target variable and the unbridged gap between input parameters and output results. This paper aims to present a state ventilation which can provide a measure of two primary, but heterogenous, ventilation support goals. The paper also tries to develop a method to compute, rather than estimate, respiratory parameters to obtain the underlying causal information.MethodsThis paper presents a state ventilation, which is calculated based on minute ventilation and blood gas partial pressures, to evaluate the efficacy of ventilation support and indicate disease progression. Through mathematical analysis, formulae are derived to compute dead space volume/ventilation, alveolar ventilation, and CO2 production.ResultsMeasurements from a reported clinical study are used to verify the analysis and demonstrate the application of derived formulae. The state ventilation gives the expected trend to show patient status, and the calculated mean values of dead space volume, alveolar ventilation, and CO2 production are 158mL, 8.8L/m, and 0.45L/m respectively for a group of patients.Discussions and ConclusionsState ventilation can be used as a target variable since it reflects patient respiratory effort and gas exchange. The derived formulas provide a means to accurately and continuously compute respiratory parameters using routinely available measurements to characterize the impact of different contributing factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.