Solar active regions (ARs) are the major sources of two of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). The largest AR in the past 24 years, NOAA AR 12192, which crossed the visible disk from 2014 October 17 to 30, unusually produced more than one hundred flares, including 32 M-class and 6 X-class ones, but only one small CME. Flares and CMEs are believed to be two phenomena in the same eruptive process. Why is such a flare-rich AR so CME-poor? We compared this AR with other four ARs; two were productive in both and two were inert. The investigation of the photospheric parameters based on the SDO/HMI vector magnetogram reveals that the flare-rich AR 12192, as with the other two productive ARs, has larger magnetic flux, current, and free magnetic energy than the two inert ARs but, in contrast to the two productive ARs, it has no strong, concentrated current helicity along both sides of the flaring neutral line, indicating the absence of a mature magnetic structure consisting of highly sheared or twisted field lines. Furthermore, the decay index above the AR 12192 is relatively low, showing strong constraint. These results suggest that productive ARs are always large and have enough current and free energy to power flares, but whether or not a flare is accompanied by a CME is seemingly related to (1) the presence of a mature sheared or twisted core field serving as the seed of the CME, or (2) a weak enough constraint of the overlying arcades.
We present multi-wavelength observations of a prominence eruption originating from a quadrupolar field configuration, in which the prominence was embedded in a side arcade. Within the two-day period prior to its eruption on 2012 October 22, the prominence was perturbed three times by chromospheric fibrils underneath, which rose upward, became brightened, and merged into the prominence, resulting in horizontal flows along the prominence axis, suggesting that the fluxes carried by the fibrils were incorporated into the magnetic field of the prominence. These perturbations caused the prominence to oscillate and to rise faster than before. The absence of intense heating within the first two hours after the onset of the prominence eruption, which followed an exponential increase in height, indicates that ideal instability played a crucial role. The eruption involved interactions with the other side arcade, leading up to a twin coronal mass ejection, which was accompanied by transient surface brightenings in the central arcade, followed by transient dimmings and brightenings in the two side arcades. We suggest that flux feeding from chromospheric fibrils might be an important mechanism to trigger coronal eruptions.
Jet, a considerable amount of plasma being ejected from chromosphere or lower corona into higher corona, is a common phenomenon. Usually a jet is triggered by a brightening or a flare, which provides the first driving force to push plasma upward. In this process, magnetic reconnection is thought to be the mechanism to convert magnetic energy into thermal, non-thermal and kinetic energies. However, most jets could reach an unusual high altitude and end much later than the end of its associated flare. This fact implies that there is another way to continuously transfer magnetic energy into kinetic energy even after the reconnection. The whole picture described above is well known in the community, but how and how much magnetic energy is released through the way other than the reconnection is still unclear. Here, through studying a prominence-like jet observed by SDO/AIA and STEREO-A/EUVI, we find that the continuous relaxation of the post-reconnection magnetic field structure is an important process for a jet to climb up higher than it could through only reconnection. The kinetic energy of the jet gained through the relaxation is 1.6 times of that gained from the reconnection. The resultant energy flux is hundreds of times larger than the flux required for the local coronal heating, suggesting that such jets are a possible source to keep corona hot. Furthermore, rotational motions appear all the time during the jet. Our analysis suggests that torsional Alfvén waves induced during reconnection could not be the only mechanism to release magnetic energy and drive jets.
The largest geomagnetic storm so far, called 2015 St. Patrick's Day event, in the solar cycle 24 was produced by a fast coronal mass ejection (CME) originating on 15 March 2015. It was an initially west‐oriented CME and expected to only cause a weak geomagnetic disturbance. Why did this CME finally cause such a large geomagnetic storm? We try to find some clues by investigating its propagation from the Sun to 1 AU. First, we reconstruct the CME's kinematic properties in the corona from the SOHO and Solar Dynamics Observatory imaging data with the aid of the graduated cylindrical shell model. It is suggested that the CME propagated to the west ∼33°±10° away from the Sun‐Earth line with a speed of about 817 km s−1 before leaving the field of view of the SOHO/Large Angle and Spectrometric Coronagraph (LASCO) C3 camera. A magnetic cloud (MC) corresponding to this CME was measured in situ by the Wind spacecraft 2 days after the CME left LASCO's field of view. By applying two MC reconstruction methods, we infer the configuration of the MC as well as some kinematic information, which implies that the CME possibly experienced an eastward deflection on its way to 1 AU. However, due to the lack of observations from the STEREO spacecraft, the CME's kinematic evolution in interplanetary space is not clear. In order to fill this gap, we utilize numerical MHD simulation, drag‐based CME propagation model (DBM) and the model for CME deflection in interplanetary space (DIPS) to recover the propagation process, especially the trajectory, of the CME from 30RS to 1 AU under the constraints of the derived CME's kinematics near the Sun and at 1 AU. It is suggested that the trajectory of the CME was deflected toward the Earth by about 12°, consistent with the implication from the MC reconstruction at 1 AU. This eastward deflection probably contributed to the CME's unexpected geoeffectiveness by pushing the center of the initially west‐oriented CME closer to the Earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.