The volatility and uncertainty of wind power often affect the quality of electric energy, the security of the power grid, the stability of the power system, and the fluctuation of the power market. In this case, the research on wind power forecasting is of great significance for ensuring the better development of wind power grids and the higher quality of electric energy. Therefore, a lot of new forecasting methods have been put forward. In this paper, a new forecasting model based on a convolution neural network and LightGBM is constructed. The procedure is shown as follows. First, we construct new feature sets by analyzing the characteristics of the raw data on the time series from the wind field and adjacent wind field. Second, the convolutional neural network (CNN) is proposed to extract information from input data, and the network parameters are adjusted by comparing the actual results. Third, in consideration of the limitations of the single-convolution model in predicting wind power, we innovatively integrated the LightGBM classification algorithm at the model to improve the forecasting accuracy and robustness. Finally, compared with the existing support vector machines, LightGBM, and CNN, the fusion model has better performance in accuracy and efficiency. INDEX TERMS Convolutional neural network, fusion model, LightGBM, ultra-short-term wind power forecasting, wind energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.