2D optics is gradually emerging as a frontier in modern optics. Plasmons in graphene provide a prominent platform for 2D optics in which the light is squeezed into atomic scale. This report highlights some recent progresses in graphene plasmons toward the 2D optics. The launch, observation, and advanced manipulation of propagating graphene plasmons for 2D optical circuits are described. Representative achievements associated with graphene metasurfaces, challenges, recent progresses like photoexcited graphene metasurfaces, and the transformation optics linking 2D to bulk optics with singularity are investigated.Abstract: Two-dimensional (2D) optics is gradually emerging as the frontier in modern optics. Plasmons in graphene provide a prominent platform for two-dimensional optics in which the light is squeezed into an atomic scale. This paper highlights some recent progresses in graphene plasmons towards the 2D optics. The launching, observation, and advanced manipulations of propagating graphene plasmons for 2D optical circuits are described. Representative achievements associated with graphene metasurfaces, challenges, recent progresses like photoexcited graphene metasurfaces and transformation optics linking 2D to bulk optics with singularity are investigated.
Artificially constructed metamaterials or metasurfaces with tailored resonant elements provide a revolutionary platform for controlling light at the subwavelength scale. Switchable or frequency-agile meta-devices are highly desirable in achieving more flexible functionalities and have been explored extensively by incorporating various materials, which respond to external stimuli. Graphene, a two-dimensional material showing extraordinary physical properties, has been found very promising for tunable meta-devices. However, the high intrinsic loss of graphene severely obstructs us from achieving high-quality resonance in various graphene metamaterials and metasurfaces, and the loss compensation can be considered as a straightforward strategy to take further advantages of enhanced light−graphene interactions. Here, we demonstrate that the photoexcited graphene, in which the quasi-Fermi energy of graphene changes corresponding to optical pumping, can boost the originally extremely weak magnetic resonance in a graphene split-ring metasurface, showing remarkable modulations in the transmission. Our work pioneers the possibilities of optically pumped graphene metasurfaces for significant enhancement of resonances and feasible modulations.
Graphene has drawn considerable attention due to its intriguing properties in photonics and optoelectronics. However, its interaction with light is normally rather weak. Meta-surfaces, artificial structures with single planar function-layers, have demonstrated exotic performances in boosting light-matter interactions, e.g., for absorption enhancement. Graphene based high efficiency absorber is desirable for its potential applications in optical detections and signal modulations. Here we exploit graphene nanoribbons based meta-surface to realize coherent perfect absorption (CPA) in the mid-infrared regime. It was shown that quasi-CPA frequencies, at which CPA can be demonstrated with proper phase modulations, exist for the grapheme meta-surface with strong resonant behaviors. The CPA can be tuned substantially by merging the geometric design of the meta-surface and the electrical tunability of graphene. Furthermore, we found that the graphene nanoribbon meta-surface based CPA is realizable with experimentally achievable graphene sample.
Goos–Hänchen (G–H) effect is of great interest in the manipulation of optical beams. However, it is still fairly challenging to attain efficient controls of the G–H shift for diverse applications. Here, a mechanism to realize tunable G–H shift in the terahertz regime with electrically controllable graphene is proposed. Taking monolayer graphene covered epsilon‐near‐zero metamaterial as a planar model system, it is found that the G–H shifts for the orthogonal s‐polarized and p‐polarized terahertz beams at oblique incidence are positive and negative, respectively. The G–H shift can be modified substantially by electrically controlling the Fermi energy of the monolayer graphene. Reversely, the Fermi energy dependent G–H effect can also be used as a strategy for measuring the doping level of graphene. In addition, the G–H shifts of the system are of strong frequency‐dependence at oblique angles of incidence, therefore the proposed graphene hybrid system can potentially be used for the generation of terahertz “rainbow,” a flat analog of the dispersive prism in optics. The proposed scheme of hybrid system involving graphene for dynamic control of G–H shift will have potential applications in the manipulation of terahertz waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.