In this paper, we tackle a critical issue in nonparametric inference for systems of interacting particles on Riemannian manifolds: the identifiability of the interaction functions. Specifically, we define the function spaces on which the interaction kernels can be identified given infinite i.i.d observational derivative data sampled from a distribution. Our methodology involves casting the learning problem as a linear statistical inverse problem using a operator theoretical framework. We prove the well-posedness of inverse problem by establishing the strict positivity of a related integral operator and our analysis allows us to refine the results on specific manifolds such as the sphere and Hyperbolic space. Our findings indicate that a numerically stable procedure exists to recover the interaction kernel from finite (noisy) data, and the estimator will be convergent to the ground truth. This also answers an open question in [MMQZ21] and demonstrate that least square estimators can be statistically optimal in certain scenarios. Finally, our theoretical analysis could be extended to the mean-field case, revealing that the corresponding nonparametric inverse problem is ill-posed in general and necessitates effective regularization techniques.
We study the identifiability of the interaction kernels in mean-field equations for intreacting particle systems. The key is to identify function spaces on which a probabilistic loss functional has a unique minimizer. We prove that identifiability holds on any subspace of two reproducing kernel Hilbert spaces (RKHS), whose reproducing kernels are intrinsic to the system and are data-adaptive. Furthermore, identifiability holds on two ambient L2 spaces if and only if the integral operators associated with the reproducing kernels are strictly positive. Thus, the inverse problem is ill-posed in general. We also discuss the implications of identifiability in computational practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.