In this study a control-oriented model is proposed to represent a wide range of non-linear discrete-time dynamic plants. As a testimony to the efficiency of the model structure for control system design, a pole placement controller is designed for non-linear discrete-time plants. Mathematically the solution of the controller output is converted into resolving a polynomial equation in the current control term u( t), which significantly reduces the difficulties encountered in non-linear control system synthesis and computational complexities. The integrated procedure provides a straightforward methodology to use in linear control system design techniques when designing non-linear control systems. For a demonstration of the effectiveness of the proposed methodology used to deal with practical problems, pole placement controllers are designed for three non-linear plants, including the Hammerstein model, a laboratory-scale liquid level system and a continuous stirred tank reactor. The simulation results are presented with graphical illustrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.