Multivariate copulas have been widely used to handle risk in the financial market. This paper aimed to adopt two novel multivariate copulas, Vine copulas and Factor copulas, to measure and compare the financial risks of the emerging economy, developed economy, and global economy. In this paper, we used data from three groups (BRICS, which stands for emerging markets, specifically, those of Brazil, Russia, India, China, and South Africa; G7, which refers to developed countries; and G20, which represents the global market), separated into three periods (pre-crisis, crisis, and post-crisis) and weighed Value at Risk (VaR) and Expected Shortfall (ES) (based on their market capitalization) to compare among three copulas, C-Vine, D-Vine, and Factor copulas. Also, real financial data demonstrated that Factor copulas have stronger stability and perform better than the other two copulas in high-dimensional data. Moreover, we showed that BRICS has the highest risk and G20 has the lowest risk of the three groups.
The global financial crisis in 2008 spurred the need to study systemic risk in financial markets, which is of interest to both academics and practitioners alike. We first aimed to measure and forecast systemic risk in global financial markets and then to construct a trade decision model for investors and financial institutions to assist them in forecasting risk and potential returns based on the results of the analysis of systemic risk. The factor copula-generalized autoregressive conditional heteroskedasticity (GARCH) models and component expected shortfall (CES) were combined for the first time in this study to measure systemic risk and the contribution of individual countries to global systemic risk in global financial markets. The use of factor copula-based models enabled the estimation of joint models in stages, thereby considerably reducing computational burden. A high-dimensional dataset of daily stock market indices of 43 countries covering the period 2003 to 2019 was used to represent global financial markets. The CES portfolios developed in this study, based on the forecasting results of systemic risk, not only allow spreading of systemic risk but may also enable investors and financial institutions to make profits. The main policy implication of our study is that forecasting systemic risk of global financial markets and developing portfolios can provide valuable insights for financial institutions and policy makers to diversify portfolios and spread risk for future investments and trade.
Financial crisis in 2008 caused huge loss and one of the accusations is the misprediction of risk measurement. Considering the important role the stock markets play, and the trend of globalization in economy, we propose forecasting Value at Risk of G20’s (except European Union) stock indexes in three periods, pre-crisis, during crisis and post-crisis, via factor copula model. Unlike those models based on multivariate normality, factor copula is based on the assumption that there exists a or several common factors which lead to the change of stock prices. In this paper, different levels of dependence among 19 countries are presented and the results indicate that, during crisis countries with higher values of coefficients tend to have larger loss than others. Also, the large numbers of violations to VaR may be an indicator of the upcoming financial crisis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.