This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a specific object part. Our interpretable CNNs use the same training data as ordinary CNNs without a need for additional annotations of object parts or textures for supervision. The interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. We can apply our method to different types of CNNs with various structures. The explicit knowledge representation in an interpretable CNN can help people understand logic inside a CNN, i.e. what patterns are memorized by the CNN for prediction. Experiments have shown that filters in an interpretable CNN are more semantically meaningful than those in traditional CNNs. 1 .
This paper 1 aims to quantitatively explain rationales of each prediction that is made by a pre-trained convolutional neural network (CNN). We propose to learn a decision tree, which clarifies the specific reason for each prediction made by the CNN at the semantic level. I.e. the decision tree decomposes feature representations in high conv-layers of the CNN into elementary concepts of object parts. In this way, the decision tree tells people which object parts activate which filters for the prediction and how much they contribute to the prediction score. Such semantic and quantitative explanations for CNN predictions have specific values beyond the traditional pixel-level analysis of CNNs. More specifically, our method mines all potential decision modes of the CNN, where each mode represents a common case of how the CNN uses object parts for prediction. The decision tree organizes all potential decision modes in a coarse-tofine manner to explain CNN predictions at different finegrained levels. Experiments have demonstrated the effectiveness of the proposed method.
The frequency and intensity of natural disasters has significantly increased over the past decades and this trend is predicted to continue. Facing these possible and unexpected disasters, accurately predicting human emergency behavior and their mobility will become the critical issue for planning effective humanitarian relief, disaster management, and long-term societal reconstruction. In this paper, we build up a large human mobility database (GPS records of 1.6 million users over one year) and several different datasets to capture and analyze human emergency behavior and their mobility following the Great East Japan Earthquake and Fukushima nuclear accident. Based on our empirical analysis through these data, we find that human behavior and their mobility following large-scale disaster sometimes correlate with their mobility patterns during normal times, and are also highly impacted by their social relationship, intensity of disaster, damage level, government appointed shelters, news reporting, large population flow and etc. On the basis of these findings, we develop a model of human behavior that takes into account these factors for accurately predicting human emergency behavior and their mobility following large-scale disaster. The experimental results and validations demonstrate the efficiency of our behavior model, and suggest that human behavior and their movements during disasters may be significantly more predictable than previously thought.
The Great East Japan Earthquake and the Fukushima nuclear accident cause large human population movements and evacuations. Understanding and predicting these movements is critical for planning effective humanitarian relief, disaster management, and long-term societal reconstruction. In this paper, we construct a large human mobility database that stores and manages GPS records from mobile devices used by approximately 1.6 million people throughout Japan from 1 August 2010 to 31 July 2011. By mining this enormous set of Auto-GPS mobile sensor data, the short-term and longterm evacuation behaviors for individuals throughout Japan during this disaster are able to be automatically discovered. To better understand and simulate human mobility during the disasters, we develop a probabilistic model that is able to be effectively trained by the discovered evacuations via machine learning technique. Based on our training model, population mobility in various cities impacted by the disasters throughout the country is able to be automatically simulated or predicted. On the basis of the whole database, developed model, and experimental results, it is easy for us to find some new features or population mobility patterns after the recent severe earthquake, tsunami and release of radioactivity in Japan, which are likely to play a vital role in future disaster relief and management worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.