The three optical absorption bands and EPR parameters of the [CuO6]10− center in the ZnO‐CdS composite nanopowders are theoretically studied from the perturbation formulas based on the cluster approach. In the formulas, the contributions to EPR parameters arising from the ligand orbital and spin–orbit coupling interactions via covalence effect are considered. For the studied [CuO6]10− cluster, the Cu–O bond lengths are suggested to show a relative elongation ratio ρ (≈ 4.1%) along the z‐axis due to Jahn–Teller effect. The defect models suggested in this work are different from the previous assumption that the impurity Cu2+ can replace the host Zn2+ site when it enters the lattices of the ΖnO and ΖnS nanocrystals, forming the tetrahedral [CuΧ4]6− clusters (Χ = O, S). The validity of the proposed model is discussed. The differences between the present calculations and the previous ones for the interstitial Cu2+ center in ZnO nanocrystals are analyzed in view of the dissimilar impurity behaviors due to the new composition CdS and distinct preparation conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.