The paper presents a new two-dimensional computational approach and results for laminar/laminar internal condensing flows. Accurate numerical solutions of the full governing equations are presented for steady and unsteady film condensation flows on a sidewall inside a vertical channel. It is found that exit conditions and noise sensitivity are important. Even for stable steady solutions obtained for nearly incompressible vapor phase flows associated with unconstrained exit conditions, the noise sensitivity to the condensing surface’s minuscule transverse vibrations is high. The structure of waves, the underlying characteristics, and the “growth/damping rates” for the disturbances are discussed. A resonance condition for high “growth rates” is proposed and its efficacy in significantly enhancing wave motion and heat transfer rates is computationally demonstrated. For the unconstrained exit cases, the results make possible a separately reported study of the effects of shear, gravity, and surface tension on noise sensitive stable solutions.
The paper presents accurate numerical solutions of the full two-dimensional governing equations for steady and unsteady laminar/laminar internal condensing flows. The results relate to issues of better design and integration of condenser-sections in thermal management systems (looped heat pipes, etc.). The flow geometry, in normal or zero gravity, is chosen to be the inside of a channel with film condensation on one of the walls. In normal gravity, film condensation is on the bottom wall of a tilted (from vertical to horizontal) channel. It is found that it is important to know whether the exit conditions are constrained or unconstrained because nearly incompressible vapor flows occur only for exit conditions that are unconstrained. For the incompressible vapor flow situations, a method for computationally obtaining the requisite exit condition and associated stable steady/quasi-steady solutions is given here and the resulting solutions are shown to be in good agreement with some relevant experimental data for horizontal channels. These solutions are shown to be sensitive to the frequency and amplitude of the various Fourier components that represent the ever-present and minuscule transverse vibrations (standing waves) of the condensing surface. Compared to a vertical channel in normal gravity, shear driven zero gravity cases have much larger pressure drops, much slower wave speeds, much larger noise sensitive wave amplitudes that are controlled by surface tension, and narrower flow regime boundaries within which vapor flow can be considered incompressible. It is shown that significant enhancement in wave-energy and/or heat-transfer rates, if desired, are possible by designing the condensing surface noise to be in resonance with the intrinsic waves.
The mechanical design of hydraulic turbines is conditioned by the dynamic response of the runner that is usually estimated by a computational model. Nevertheless, the runner has complex boundary conditions that are difficult to include in the computational model. One of these boundary conditions is the water in which the runner is submerged. The effect of the added mass and damping of water can modify considerably the natural frequencies of the runner. An experimental investigation in a reduced scale model of a turbine runner, using modal analysis, was carried out. Several impact tests with the runner freely suspended in air and in water were done. The response was measured with accelerometers located in different positions of the runner. From the modal analysis, the natural frequencies, damping ratios, and mode-shapes were determined. The same mode-shapes obtained in air were obtained in water but with lower natural frequencies and higher damping ratios in water. The difference in the natural frequencies is shown to be dependant basically on the added mass effect of the water and not on its added damping. This difference also depends on the geometry of the mode, presenting different values for different mode-shapes. Using nondimensional values, the reduction in the natural frequencies can be extrapolated to other Francis runners presenting similar geometrical characteristics. r
In this paper, a numerical simulation to analyze the influence of the surrounding water in a turbine runner has been carried out using finite element method (FEM). First, the sensitivity of the FEM model on the element shape and mesh density has been analysed. Secondly, with the optimized FEM model, the modal behaviour with the runner vibrating in air and in water has been calculated. The added mass effect by comparing the natural frequencies and mode shapes in both cases has been determined.The numerical results obtained have been compared with experimental results available. The comparison shows a good agreement in the natural frequency values and in the mode shapes. The added mass effect due to the fluid structure interaction has been discussed in detail.Finally, the added mass effect on the submerged runner is quantified using a non-dimensional parameter so that the results can be extrapolated to runners with geometrical similarity.
The present paper shows the results of numerical and experimental modal analyses of Francis runners, which were executed in air and in still water. In its first part this paper is focused on the numerical prediction of the model parameters by means of FEM and the validation of the FEM method. Influences of different geometries on modal parameters and frequency reduction ratio (FRR), which is the ratio of the natural frequencies in water and the corresponding natural frequencies in air, are investigated for two different runners, one prototype and one model runner. The results of the analyses indicate very good agreement between experiment and simulation. Particularly the frequency reduction ratios derived from simulation are found to agree very well with the values derived from experiment. In order to identify sensitivity of the structural properties several parameters such as material properties, different model scale and different hub geometries are numerically investigated. In its second part, a harmonic response analysis is shown for a Francis runner by applying the time dependent pressure distribution resulting from an unsteady CFD simulation to the mechanical structure. Thus, the data gained by modern CFD simulation are being fully utilized for the structural design based on life time analysis. With this new approach a more precise prediction of turbine loading and its effect on turbine life cycle is possible allowing better turbine designs to be developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.