East Asia is one of the most important sources of aerosols in the world. The distribution of aerosols varies across time and space. Accurate aerosol data is crucial to identify its spatiotemporal dynamics; thus, it is of great significance to obtain and verify new aerosol data for this region. Based on the Aerosol Optical Depth (AOD) data of the Aerosol Robotic Network (AERONET) program for 17 stations from 2011 to 2020, this study comprehensively verified the accuracy and applicability of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD 1 km products among different seasons, elevations, and climate zones over entire East Asia. The results showed that: (1) The overall accuracy of MAIAC AOD was high in East Asia, and the accuracy of Terra was slightly better than that of Aqua. MAIAC AOD showed significant heterogeneity among sites. MAIAC AOD performed well in areas with high vegetation cover and flat terrain, while the inversion accuracy was relatively low in areas with low vegetation cover and high terrain. (2) In general, MAIAC AOD and AERONET AOD showed good agreement in different seasons, presenting as winter > spring > autumn > summer. Yet the accuracy and consistency of Terra AOD product were better than Aqua product. (3) MAIAC AOD showed different accuracy at different elevations and climate zones. It had a high correlation and best inversion accuracy with AERONET AOD at low and medium elevations. MAIAC AOD had better inversion accuracy in the arid and warm temperate zones than that in the equatorial and cold temperate zones. (4) AOD distribution and its trend showed significant spatial differences in East Asia. The high AOD values were dominant in the Sichuan basin and the eastern plains of China, as well as in India and Bangladesh, while the relatively low AOD values were distributed in southwestern China and the areas north of 40°N. AOD in most parts of East Asia showed a negative trend, indicating a great improvement in air quality in these regions.
Forest phenology is sensitive to climate change, and its responses affect many land surface processes, resulting in a feedback effect on climate change. Human activities have been the main driver of climate change’s long-term shifts in temperature and weather patterns. Forest phenology, understood as the timing of the annual cycles of plants, is extremely sensitive to changes in climate. Quantifying the responses of temperate forest phenology under an elevational range of topographic conditions that mimic climate change is essential for making effective adaptive forest ecosystem management decisions. Our study utilized the Google Earth Engine (GEE), gap filling, and the Savitzky–Golay (GF-SG) algorithm to develop a long-time series spatio-temporal remote sensing data fusion. The forest phenology characteristics on the north slope of Changbai Mountain were extracted and analyzed annually from 2013 to 2022. Our study found that the average start of the growing season (SOS) on the north slope of Changbai Mountain occurred between the 120th–150th day during the study period. The end of the growing season (EOS) occurred between the 270th–300th day, and the length of the growing season (LOS) ranged from the 110th–190th day. A transect from the northeast to southwest of the study area for a 10-year study period found that SOS was delayed by 39 d, the EOS advanced by 32 d, and the LOS was gradually shortened by 63 d. The forest phenology on the north slope of Changbai Mountain showed significant topographic differentiations. With an increase of 100 m in altitude, the mean SOS was delayed by 1.71 d (R2 = 0.93, p < 0.01). There were no obvious trends in EOS variation within the study area altitude gradient. LOS decreased by 1.23 d for each 100 m increase in elevation (R2 = 0.90, p < 0.01). Forests on steep slopes had an earlier SOS, a later EOS, and a longer LOS than forests on gentle slopes. For each degree increase in slope, SOS advanced by 0.12 d (R2 = 0.53, p = 0.04), EOS was delayed by 0.18 d (R2 = 0.82, p = 0.002), and the LOS increased by 0.28 d (R2 = 0.78, p = 0.004). The slope aspect had effects on the EOS and the LOS but had no effect on the SOS. The forest EOS of the south aspect was 3.15 d later than that of the north aspect, and the LOS was 6.47 d longer. Over the 10-year study period, the phenology differences between the north and south aspects showed that the LOS difference decreased by 0.85 d, the SOS difference decreased by 0.34 d, and the EOS difference decreased by 0.53 d per year. Our study illustrates the significance of the coupling mechanism between mountain topography and forest phenology, which will assist our future understanding of the response of mountain forest phenology to climate change, and provide a scientific basis for further research on temperate forest phenology.
Tooth is of great significance to human health. With age, the characteristics of the teeth will change. At present, different detection methods have been developed to detect the characteristics of teeth. However, the existing detection methods have shortcomings. In view of the effective characterization of teeth characteristics in different age groups, this paper aims to explore spectral polarization method, namely a non-destructive and low-loss detection method, which is a useful supplement to conventional detection methods. The method for spectral polarization to effectively characterize the tooth characteristics of different ages was proposed. Tooth samples from 7 different age groups, such as 10-20 years old, 20-30 years old, 30-40 years old, 40-50 years old, 50-60 years old, 60-70 years old and over 70 years old, were selected; 4 different observation spectrum bands such as 450nm, 550nm, 670nm, 870nm were selected; the polarization parameters were selected to describe the spectral polarization characteristics of the teeth, and a polynomial correlation mathematical model was constructed. The experimental results showed that the tooth samples in the same age group showed a negative correlation between spectrum band and polarization characteristics. The polarization characteristics of tooth samples in subjects aged 50-60 years old reached the peak value for the same observation band. Construction of the model could effectively interpret the coupling correlation between tooth samples and spectral polarization characteristics in different age groups. The research content of this paper effectively expands the method of tooth characteristic detection, reveals that spectral polarization can effectively characterize tooth characteristics, and develops a novel non-destructive and lowloss polarization spectral detection technology.
In recent years, atmospheric aerosol pollution has seriously affected the ecological environment and human health. Understanding the spatial and temporal variation of AOD is essential to revealing the impact of aerosols on the environment. Based on the MAIAC AOD 1 km product from 2011 to 2020, we analyzed AOD’s distribution patterns and trends in different time series across East Asia. The results showed that: (1) The annual average AOD in East Asia varied between 0.203 and 0.246, with a decrease of 14.029%. The areas with high AOD values were mainly located in the North China Plain area, the Sichuan Basin area, and the Ganges Delta area, with 0.497, 0.514, and 0.527, respectively. Low AOD values were mainly found in the Tibetan Plateau and in mountainous areas north of 40° N, with 0.061 in the Tibetan Plateau area. (2) The distribution of AOD showed a logarithmic decreasing trend with increasing altitude. Meanwhile, the lower the altitude, the faster the rate of AOD changes with altitude. (3) The AOD of East Asia showed different variations in characteristics in different seasons. The maximum, minimum, and mean values of AOD in spring and summer were much higher than those in autumn and winter. The monthly average AOD reached a maximum of 0.326 in March and a minimum of 0.190 in November. The AOD showed a continuous downward trend from March to September. The highest quarterly AOD values in the North China Plain occurred in summer, while the highest quarterly AOD values in the Sichuan Basin, the Ganges Delta, and the Tibetan Plateau all occurred in spring, similar to the overall seasonal variation in East Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.