FE65 is a multimodular adapter protein that is expressed predominantly in brain. Its C-terminal phosphotyrosine interaction domain (PID) binds to the intracellular tail of the beta-amyloid precursor protein (betaPP), a protein of central importance to the pathogenesis of dementias of the Alzheimer type. To study the physiological functions of FE65, we generated a line of FE65 knockout mice via gene targeting. By Western analysis with a panel of FE65-specific antibodies, we demonstrate that the 97-kDa full-length FE65 (p97) was ablated in the mutant mice, and that a previously undescribed FE65 isoform with apparent molecular mass of 60 kDa (p60) was expressed in both wild-type and mutant mice. p60 had a truncated N-terminus and was likely to be generated through alternative translation. Expressions of the two isoforms appeared to be brain region distinct and age dependent. The p97FE65(-/-) mice were viable and showed no obvious physical impairments or histopathological abnormalities. However, p97FE65(-/-) and p97FE65(+/-) mice exhibited poorer performances than wild-type mice on a passive avoidance task when tested at 14 months (P <.05). p97FE65(-/-) mice at 14 months also exhibited impaired hidden-platform acquisition (P <.05) and a severe reversal-learning deficit (P <.002) but normal visual-platform acquisition in the Morris water maze tests. Probe trials confirmed impairments in p97FE65(-/-) mice in relearning of new spatial information, suggesting a hippocampus-dependent memory-extinction deficit. Reduced secretion of Abeta peptides was observed in primary neuronal cultures of hybrids of p97FE65(-/-)/betaPP transgenic (Tg2576) mice. These studies suggest an important and novel function of FE65 in learning and memory.
Brain aging and Alzheimer’s disease both demonstrate the accumulation of beta-amyloid protein containing “plaques” and tau protein containing “tangles” that contribute to accelerated memory loss and cognitive decline. In the present investigation we identified a specific plant extract and its constituents as a potential alternative natural solution for preventing and reducing both brain “plaques and tangles”. PTI-00703 cat’s claw (Uncaria tomentosa from a specific Peruvian source), a specific and natural plant extract from the Amazon rain forest, was identified as a potent inhibitor and reducer of both beta-amyloid fibrils (the main component of “plaques”) and tau protein paired helical filaments/fibrils (the main component of “tangles”). PTI-00703 cat’s claw demonstrated both the ability to prevent formation/aggregation and disaggregate preformed Aβ fibrils (1–42 and 1–40) and tau protein tangles/filaments. The disaggregation/dissolution of Aβ fibrils occurred nearly instantly when PTI-00703 cat’s claw and Aβ fibrils were mixed together as shown by a variety of methods including Thioflavin T fluorometry, Congo red staining, Thioflavin S fluorescence and electron microscopy. Sophisticated structural elucidation studies identified the major fractions and specific constituents within PTI-00703 cat’s claw responsible for both the observed “plaque” and “tangle” inhibitory and reducing activity. Specific proanthocyanidins (i.e. epicatechin dimers and variants thereof) are newly identified polyphenolic components within Uncaria tomentosa that possess both “plaque and tangle” reducing and inhibitory activity. One major identified specific polyphenol within PTI-00703 cat’s claw was epicatechin-4β-8-epicatechin (i.e. an epicatechin dimer known as proanthocyanidin B2) that markedly reduced brain plaque load and improved short-term memory in younger and older APP “plaque-producing” (TASD-41) transgenic mice (bearing London and Swedish mutations). Proanthocyanidin B2 was also a potent inhibitor of brain inflammation as shown by reduction in astrocytosis and gliosis in TASD-41 transgenic mice. Blood-brain-barrier studies in Sprague-Dawley rats and CD-1 mice indicated that the major components of PTI-00703 cat’s claw crossed the blood-brain-barrier and entered the brain parenchyma within 2 minutes of being in the blood. The discovery of a natural plant extract from the Amazon rain forest plant (i.e. Uncaria tomentosa or cat’s claw) as both a potent “plaque and tangle” inhibitor and disaggregator is postulated to represent a potential breakthrough for the natural treatment of both normal brain aging and Alzheimer’s disease.
The FE65 protein binds to the intracellular domain of the beta-amyloid precursor protein (betaPP) and may modulate the internalization of betaPP. This gene is highly expressed in regions of the brain specifically affected in dementia of the Alzheimer type (DAT). As a prelude to further investigations of the role of FE65 in the metabolism of betaPP and in the pathogenesis of DAT, we have determined the entire genomic structure and sequence of human FE65 and have discovered several polymorphisms in this gene. Human FE65 contains 14 exons ranging in size from 6 to 735 bp. All splice sites conform to consensus sequences except for the donor site of intron 10. The 5' end of FE65 mRNA was identified by rapid amplification of the cDNA 5' end and is 31 bp longer than the previously published cDNA sequence. The 5'-flanking region of this gene is TATA-less and is very GC-rich with at least five putative Sp1 binding sites. In comparison to the genomic rat FE65 sequence, the human FE65 5'-untranslated region is 134 bp longer and has an extra exon (exon 1, 86 bp). To identify mutations/polymorphisms of the coding regions of this gene, we performed blinded analysis of 457 Caucasian case-control samples from a large epidemiological study of sporadic DAT. Screening was conducted by single-strand conformation polymorphism. Four minor variants were found within the coding region, with frequencies between 0.002 and 0.015; two of the four result in amino acid substitutions. The more informative biallelic polymorphism (a trinucleotide deletion and a single base substitution) was found within intron 13 (84 bp), which interrupts two exons encoding the betaPP binding site. The frequency of the minor allele in this intron was 0.097 in DAT cases and 0.161 in controls (chi2=7.78, P=0.0054). Having at least one copy of the minor allele was associated with a decreased risk for DAT (chi2=9.20, P<0.005, odds ratio=0.49, 95% CI 0.31-0.77). Multivariate analysis showed that this association was independent of the APOE genotype. These results suggest that either FE65 itself or a closely linked gene influences the pathogenesis of sporadic DAT. The interaction of FE65 with betaPP and the association of a FE65 polymorphism with DAT lend credence to the hypothesis that the metabolism of betaPP is central to the pathogenesis of common sporadic forms of DAT.
FE65 has been described as an adaptor protein; its partners include the -amyloid precursor protein (APP) and Tip60 (a histone acetyltransferase). Recent evidence suggests that APP may function in a nuclear signaling pathway via formation of APP-FE65-Tip60 complexes. The evidence is largely based on experiments in which APP/Tip60 is fused to the DNA binding domain of a yeast transcriptional factor Gal4 (Gal4DB) that can activate a reporter gene only when FE65 is coexpressed. One interpretation of published experiments has not yet been tested; however, there is the possibility that FE65 itself is the dominant transcriptional activator, whereas APP and Tip60 serve merely as positive/negative modulators or bridges for connecting FE65 to Gal4DB. To test this possibility, we fused Gal4DB directly to either end of FE65 and assessed their nuclear signaling in the presence or absence of exogenous APP/Tip60 or after knockdown of endogenous APP/Tip60. We found that FE65-Gal4DB by itself was able to trigger robust reporter activities. Increasing levels of APP could not further augment the reporter activity, but knocking down endogenous APP or interrupting FE65-APP binding reduced the signaling by up to 2-fold. The magnitudes of the reporter activities did not correlate with relative FE65 affinities for APP. Both overexpression and knockdown experiments showed that Tip60 plays a negative role. The results are consistent with the notion that FE65 is the key agent of Gal4DB-mediated transcriptional transactivation, whereas Tip60 is an FE65-associated repressor. Although APP may have modest stimulating effects, apparently there is no absolute requirement for that molecule for the nuclear signaling pathway.FE65 is a brain-enriched protein and has the ability to interact with several different proteins via its three protein-protein interaction domains as follows: a WW domain and two phosphotyrosine interaction domains (PID 2 domains) (1, 2). PID1 interacts with Tip60 (Tatinteractive protein, 60 kDa); PID2 is the main region bound by the APP intracellular domain (AICD). These interactions may have impacts on APP processing (1, 3, 4), membrane dynamics (including axonal projections and neuronal positioning) (5-7), learning and memory (8), and transcriptional transactivation (9).APP is the best studied protein in the field of Alzheimer research because causal relationships have been established with mutations in APP and presenilins, enzymes involved in APP processing (10 -12). Proteolytic fragments of APP are also key components of Alzheimer pathology (13). Despite extensive research efforts, however, APP functions are poorly understood. The protein undergoes two consecutive cleavages at sites near or within its transmembrane domain (12). The first cleavages (by ␣-/-secretases) shed APP ectodomains into extracellular environments, perhaps leading to modulations of cell proliferation and adhesion, neurite outgrowth, and synaptogenesis (6, 14,15). A subsequent cleavage (by ␥-secretases complexes) liberates P3 or the -amyloid peptid...
Adaptor protein FE65 (APBB1) specifically binds to the intracellular tail of the type I transmembrane protein, -amyloid precursor protein (APP). The formation of this complex may be important for modulation of the processing and function of APP. APP is proteolytically cleaved at multiple sites. The cleavages and their regulation are of central importance in the pathogenesis of dementias of the Alzheimer type. In cell cultures and perhaps in vivo, secretion of the ␣-cleaved APP ectodomain (sAPP␣) is the major pathway in the most cells. Regulation of the process may require extracellular/intracellular cues. Neither extracellular ligands nor intracellular mediators have been identified, however. Here, we show novel evidence that the major isoform of FE65 (97-kDa FE65, p97FE65) can be converted to a 65-kDa N-terminally truncated C-terminal fragment (p65FE65) via endoproteolysis. The cleavage region locates immediately after an acidic residue cluster but before the three major protein-protein binding domains. The cleavage activity is particularly high in human and non-human primate cells and low in rodent cells; the activity appears to be triggered/enhanced by high cell density, presumably via cell-cell/cell-substrate contact cues. As a result, p65FE65 exhibits extraordinarily high affinity for APP (up to 40-fold higher than p97FE65) and potent suppression (up to 90%) of secretion of sAPP␣. Strong p65FE65-APP binding is required for the suppression. The results suggest that p65FE65 may be an intracellular mediator in a signaling cascade regulating ␣-secretion of APP, particularly in primates.FE65 is a multimodular adaptor protein, consisting of three major protein-protein interaction domains, a WW domain and two phosphotyrosine interaction domains (PID) 1 (1, 2) ( Fig. 2A). The interaction between FE65 and APP mainly takes place between the C-terminal PID (PID2) and the APP intracellular domain (AICD), although other regions may also potentially contribute to the action. The physiological effects of FE65-〈PP complexes are not well understood. Genetic evidence suggests that strong FE65-〈PP binding was favored by natural selection during animal evolution toward human lineage (3). 〈PP is a widely studied protein because of its role in the pathogenesis of dementias of the Alzheimer type (DAT). FE65 is predominantly expressed in central nervous system neurons, and its expression is regulated during development and aging, with high levels corresponding to the timing of neural tissue formation and high neuronal activity (4 -8). Selective knockout of the p97FE65 isoform results in modest impairments in learning but severe deficits in relearning spatial tasks (8). These phenotypes reflect reduced synaptic plasticity. Thus, the APP-FE65 pathway may play roles in normal and abnormal cognitive functions. In addition to binding to AICD, FE65 can also interact, at least in vitro, with several other proteins through its WW and PID1 domains (1, 2). FE65 is able to translocate between the nucleus and cytoplasm, consistent with the d...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.