We used immortalized human hepatocytes to study the bioactivation of leflunomide and the metabolic degradation to its major metabolite, A77 1726. Both leflunomide and A77 1726 caused a time- and concentration-dependent increase in LDH release. The cytotoxicity of leflunomide, but not that of A77 1726, was prevented by the pan-CYP inhibitor, 1-aminobenzotriazole, indicating that an oxidative metabolite(s) was responsible for the cell injury. LC/MS/MS analysis revealed that leflunomide was rapidly degraded in hepatocytes biphasically (t((1/2))(a) = 1.5 h, t((1/2)) >24 h), but much slower in cell-free medium (t((1/2)) >24 h). In contrast, the generation of A77 1726 occurred at a similar rate in cells and cell-free systems. In conclusion, leflunomide was rapidly metabolized in human hepatocytes to A77 1726, but its toxicity was dependent on other, CYP-dependent intermediates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.