Australian and New Zealand universities commenced a new academic year in February/March 2020 largely with “business as usual.” The subsequent Covid‐19 pandemic imposed unexpected disruptions to anatomical educational practice. Rapid change occurred due to government‐imposed physical distancing regulations from March 2020 that increasingly restricted anatomy laboratory teaching practices. Anatomy educators in both these countries were mobilized to adjust their teaching approaches. This study on anatomy education disruption at pandemic onset within Australia and New Zealand adopts a social constructivist lens. The research question was “What are the perceived disruptions and changes made to anatomy education in Australia and New Zealand during the initial period of the Covid‐19 pandemic, as reflected on by anatomy educators?.” Thematic analysis to elucidate “the what and why” of anatomy education was applied to these reflections. About 18 anatomy academics from ten institutions participated in this exercise. The analysis revealed loss of integrated “hands‐on” experiences, and impacts on workload, traditional roles, students, pedagogy, and anatomists' personal educational philosophies. The key opportunities recognized for anatomy education included: enabling synchronous teaching across remote sites, expanding offerings into the remote learning space, and embracing new pedagogies. In managing anatomy education's transition in response to the pandemic, six critical elements were identified: community care, clear communications, clarified expectations, constructive alignment, community of practice, ability to compromise, and adapt and continuity planning. There is no doubt that anatomy education has stepped into a yet unknown future in the island countries of Australia and New Zealand.
The double tendon insertion may allow an element of independent function of each portion of the biceps, and, during repair of an avulsion, the surgeon should ensure correct orientation of both tendon components.
Three‐dimensional (3D) printing, or additive manufacturing, is now a widely used tool in pre‐operative planning, surgical teaching and simulator training. However, 3D printing technology that produces models with accurate haptic feedback, biomechanics and visuals for the training surgeon is not currently available. Challenges and opportunities in creating such surgical models will be discussed in this review paper. Surgery requires proper tissue handling as well as knowledge of relevant anatomy. To prepare doctors properly, training models need to take into account the biomechanical properties of the anatomical structures that will be manipulated in any given operation. This review summarises and evaluates the current biomechanical literature as it relates to human tissues and correlates the impact of this knowledge on developing high fidelity 3D printed surgical training models. We conclude that, currently, a printer technology has not yet been developed which can replicate many of the critical qualities of human tissue. Advances in 3D printing technology will be required to allow the printing of multi‐material products to achieve the mechanical properties required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.