a b s t r a c tThis contribution addresses a confrontation between the experimental simulation of a rotor/stator interaction case initiated by structural contacts with numerical predictions made with an in-house numerical strategy. Contrary to previous studies carried out within the low-pressure compressor of an aircraft engine, this interaction is found to be nondivergent: high amplitudes of vibration are experimentally observed and numerically predicted over a short period of time. An in-depth analysis of experimental data first allows for a precise characterization of the interaction as a rubbing event involving the first torsional mode of a single blade. Numerical results are in good agreement with experimental observations: the critical angular speed, the wear patterns on the casing as well as the blade dynamics are accurately predicted. Through out the article, the in-house numerical strategy is also confronted to another numerical strategy that may be found in the literature for the simulation of rubbing events: key differences are underlined with respect to the prediction of non-linear interaction phenomena.
This paper provides new insight on the simulation of blade-tip/casing rubbing events within aircraft engines accounting for thermomechanical effects within the casing. A multi-physics numerical strategy is presented in order to simulate an interaction experimentally witnessed on a full-scale low-pressure compressor. Experimental data are used for an accurate representation of the blade's incursion depth within the abradable coating. This numerical strategy combines Safran's in-house tool for rotor/stator interaction simulations with a finite element based thermomechanical analysis carried out with Ansys. This work underlines the distinct contributions of both dynamical and thermomechanical phenomena in the simulated interaction. Competition between wear and thermal expansions is investigated as well as their consequences on blade dynamics. The proposed numerical strategy yields an accurate description of the interaction phenomenon as wear patterns, critical speed, amplitude growth rate of the blade vibration and temperature levels may be predicted.
The development of a predictive numerical strategy for the simulation of rotor/stator interactions is a concern for several aircraft engine manufacturers. As a matter of fact, modern designs of aircraft engines feature reduced operating clearances between rotating and static components which yields more frequent structural contacts. Subsequent interaction phenomena (be it rubbing events, modal interaction or whirl motions) are not yet fully understood. For that reason, experimental data obtained from set-ups dedicated to the simulation of such interactions are scrutinized and are key in: (1) increasing the knowledge of the interaction phenomena and (2) allowing for a calibration of the numerical models with realistic events. In this contribution, the focus is made on an experimental set-up in Snecma facilities. It features a full-scale high-pressure compressor stage and aims at simulating contact induced interactions between one of the blades (slightly longer than the other ones) and the surrounding abradable coating that is deposited along the casing circumference. For this experimental set-up, it is found that the witnessed interaction involves a single blade — thus it should be analyzed as a sequence of rubbing events — and more specifically its first torsional mode, which is its second free-vibration mode. The focus is made both on the presentation of the experimental set-up and on the confrontation with the numerical results. Numerical results are analyzed by means of adaptative signal processing techniques and the consistency between numerical results and experimental observations is underlined both in time and frequency domains. In particular, the numerical strategy developed for Snecma is shown to predict very accurately the nature of the interaction as wear patterns obtained experimentally and numerically are a match. This numerical/experimental confrontation is the first attempt to calibrate a sophisticated numerical strategy with experimental data acquired within the high-pressure compressor of an aircraft engine for the simulation of rotor/stator interactions. Contrary to previous studies carried out within the low-pressure compressor of an aircraft engine, this interaction is found to be non-divergent: high amplitudes of vibration are experimentally observed and numerically predicted over a very short period of time. The ability of the numerical strategy to predict torsion induced interactions opens avenues for further analyses in turbine stages and with more sophisticated models including mistuned bladed disks and multi-stage components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.