We introduce GPT-NeoX-20B, a 20 billion parameter autoregressive language model trained on the Pile, whose weights will be made freely and openly available to the public through a permissive license. It is, to the best of our knowledge, the largest dense autoregressive model that has publicly available weights at the time of submission. In this work, we describe GPT-NeoX-20B's architecture and training, and evaluate its performance on a range of language-understanding, mathematics and knowledge-based tasks. We open-source the training and evaluation code, as well as the model weights, at https://github.com/ EleutherAI/gpt-neox.
We introduce GPT-NeoX-20B, a 20 billion parameter autoregressive language model trained on the Pile, whose weights will be made freely and openly available to the public through a permissive license. It is, to the best of our knowledge, the largest dense autoregressive model that has publicly available weights at the time of submission. In this work, we describe GPT-NeoX-20B's architecture and training and evaluate its performance on a range of language-understanding, mathematics, and knowledge-based tasks. We find that GPT-NeoX-20B is a particularly powerful few-shot reasoner and gains far more in performance when evaluated five-shot than similarly sized GPT-3 and FairSeq models. We open-source the training and evaluation code, as well as the model weights, at https:// github.com/EleutherAI/gpt-neox.
To reduce the training time of large-scale Deep Neural Networks (DNNs), Deep Learning (DL) scientists have started to explore parallelization strategies like data-parallelism, model-parallelism, and hybrid-parallelism. While data-parallelism has been extensively studied and developed, several problems exist in realizing model-parallelism and hybrid-parallelism efficiently. Four major problems we focus on are: 1) defining a notion of a distributed model across processes, 2) implementing forward/back-propagation across process boundaries that requires explicit communication, 3) obtaining parallel speedup on an inherently sequential task, and 4) achieving scalability without losing out on a model's accuracy. To address these problems, we create HyPar-Flow-a model-size and model-type agnostic, scalable, practical, and user-transparent system for hybrid-parallel training by exploiting MPI, Keras, and TensorFlow. HyPar-Flow provides a single API that can be used to perform data, model, and hybrid parallel training of any Keras model at scale. We create an internal distributed representation of the user-provided Keras model, utilize TF's Eager execution features for distributed forward/back-propagation across processes, exploit pipelining to improve performance and leverage efficient MPI primitives for scalable communication. Between model partitions, we use send and recv to exchange layer-data/partial-errors while allreduce is used to accumulate/average gradients across model replicas. Beyond the design and implementation of HyPar-Flow, we also provide comprehensive correctness and performance results on three state-of-the-art HPC systems including TACC Frontera (#5 on Top500.org). For ResNet-1001, an ultra-deep model, HyPar-Flow provides: 1) Up to 1.6× speedup over Horovod-based data-parallel training, 2) 110× speedup over single-node on 128 Stampede2 nodes, and 3) 481× speedup over single-node on 512 Frontera nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.