Abstract:We introduce a new class of neural implants with the topology and compliance of dura mater, the protective membrane of the brain and spinal cord. These neural interfaces, which we called e-dura, achieve chronic bio-integration within the subdural space where they conform to the statics and dynamics of neural tissue. e-dura embeds interconnects, electrodes and chemotrodes that sustain millions of mechanical stretch cycles, electrical stimulation pulses, and chemical injections. These integrated modalities enable multiple neuroprosthetic applications. e-dura extracted cortical states in freely behaving animals for brain machine interface, and delivered electrochemical spinal neuromodulation that restored locomotion after paralyzing spinal cord injury. e-dura offers a novel platform for chronic multimodal neural interfaces in basic research and neuroprosthetics.3 Neuroprosthetic medicine is improving the lives of countless individuals. Cochlear implants restore hearing in deaf children, deep brain stimulation alleviates Parkinsonian symptoms, and spinal cord neuromodulation attenuates chronic neuropathic pain (1). These interventions rely on implants developed in the 1980s (2, 3). Since then, advances in electroceutical, pharmaceutical, and more recently optogenetic treatments triggered development of myriad neural interfaces that combine multiple modalities (4-9). However, the conversion of these sophisticated technologies into chronic implants mediating long-lasting functional benefits has yet to be achieved. A recurring challenge restricting chronic bio-integration is the substantial biomechanical mismatch between implants and neural tissues (10-13). Here, we introduce a new class of soft multimodal neural interfaces that achieve chronic bio-integration, and we demonstrate their long-term efficacy in clinically relevant applications. e-dura fabrication. We designed and engineered soft interfaces that mimic the topology and mechanical behavior of the dura mater (Fig. 1A-B). The implant, which we called electronic dura mater or e-dura, integrates a transparent silicone substrate (120µm in thickness), stretchable gold interconnects (35nm in thickness), soft electrodes coated with a novel platinum-silicone composite (300µm in diameter), and a compliant fluidic microchannel (100µm x 50µm in crosssection) (Fig. 1C-D, fig. S1-S2-S3). The interconnects and electrodes transmit electrical excitation and transfer electrophysiological signals.The microfluidic channel, termed chemotrode (14), delivers drugs locally (Fig. 1C, fig. S3). Microcracks in the gold interconnects (15) and the newly developed soft platinum-silicone composite electrodes confer exceptional stretchability to the entire implant (Fig. 1B, Movie S1). The patterning techniques of metallization and microfluidics support rapid manufacturing of customized neuroprostheses.4 e-dura implantation. Most implants used experimentally or clinically to assess and treat neurological disorders are placed above the dura mater (3,(16)(17)(18). The compliance of e-...
Regaining Limb Movement Despite many years of intensive research, there is still an urgent need for novel treatments to help patients restore motor function after spinal cord injuries. van den Brand et al. (p. 1182 ) produced left and right hemisections at different levels of the rat thoracic spinal cord to cause complete hind limb paralysis mimicking the situation in humans with spinal cord injury. Systemic application of pharmacological agents, combined with a multisystem rehabilitation program including a robotic postural neuroprosthesis, restored voluntary movements of both hind limbs.
Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain–computer interfaces1–3 have directly linked cortical activity to electrical stimulation of muscles, which have restored grasping abilities after hand paralysis1,4. Theoretically, this strategy could also restore control over leg muscle activity for walking5. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges6,7. Recently, we showed in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion8–10. Here, we interfaced leg motor cortex activity with epidural electrical stimulation protocols to establish a brain–spinal interface that alleviated gait deficits after a spinal cord injury in nonhuman primates. Rhesus monkeys were implanted with an intracortical microelectrode array into the leg area of motor cortex; and a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain–spinal interface in intact monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain–spinal interface restored weight-bearing locomotion of the paralyzed leg on a treadmill and overground. The implantable components integrated in the brain–spinal interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.