Rotaxanes and molecular knots exhibit particular properties resulting from the presence of a mechanical bond within their structure that maintains the molecular components interlocked in a permanent manner. On the other hand, the disassembly of the interlocked architecture through the breakdown of the mechanical bond can activate properties which are masked in the parent compound. Herein, we present the development of stimuli‐responsive CuI‐complexed [2]catenanes as OFF/ON catalysts for the copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction. The encapsulation of the CuI ion inside the [2]catenanes inhibits its ability to catalyze the formation of triazoles. In contrast, the controlled opening of the two macrocycles induces the breaking of the mechanical bond, thereby restoring the catalytic activity of the CuI ion for the CuAAC reaction. Such OFF/ON catalysts can be involved in signal amplification processes with various potential applications.
Background Although metabolomics continues to expand in many domains of research, methodological issues such as sample type, extraction and analytical protocols have not been standardized, impeding proper comparison between studies and future research. Methods In the present study, five solvent-based and solid-phase extraction methods were investigated in both plasma and serum. All these extracts were analyzed using four liquid chromatography coupled with high resolution mass spectrometry (LC–MS) protocols, either in reversed or normal-phase and with both types of ionization. The performances of each method were compared according to putative metabolite coverage, method repeatability and also extraction parameters such as overlap, linearity and matrix effect; in both untargeted (global) and targeted approaches using fifty standard spiked analytes. Results Our results verified the broad specificity and outstanding accuracy of solvent precipitation, namely methanol and methanol/acetonitrile. We also reveal high orthogonality between methanol-based methods and SPE, providing the possibility of increased metabolome coverage, however we highlight that such potential benefits must be weighed against time constrains, sample consumption and the risk of low reproducibility of SPE method. Furthermore, we highlighted the careful consideration about matrix choice. Plasma showed the most suitable in this metabolomics approach combined with methanol-based methods. Conclusions Our work proposes to facilitate rational design of protocols towards standardization of these approaches to improve the impact of metabolomics research.
Rotaxanes and molecular knots exhibit particular properties resulting from the presence of a mechanical bond within their structure that maintains the molecular components interlocked in a permanent manner. On the other hand, the disassembly of the interlocked architecture through the breakdown of the mechanical bond can activate properties which are masked in the parent compound. Herein, we present the development of stimuli-responsive Cu I -complexed [2]catenanes as OFF/ON catalysts for the coppercatalyzed alkyne-azide cycloaddition (CuAAC) reaction. The encapsulation of the Cu I ion inside the [2]catenanes inhibits its ability to catalyze the formation of triazoles. In contrast, the controlled opening of the two macrocycles induces the breaking of the mechanical bond, thereby restoring the catalytic activity of the Cu I ion for the CuAAC reaction. Such OFF/ON catalysts can be involved in signal amplification processes with various potential applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.