Abstract. This paper addresses physics-informed deep learning schemes for satellite ocean remote sensing data. Such observation datasets are characterized by the irregular space-time sampling of the ocean surface due to sensors’ characteristics and satellite orbits. With a focus on satellite altimetry, we show that end-to-end learning schemes based on variational formulations provide new means to explore and exploit such observation datasets. Through Observing System Simulation Experiments (OSSE) using numerical ocean simulations and real nadir and wide-swath altimeter sampling patterns, we demonstrate their relevance w.r.t. state-of-the-art and operational methods for space-time interpolation and short-term forecasting issues. We also stress and discuss how they could contribute to the design and calibration of ocean observing systems.
Abstract. The reconstruction of sea surface currents from satellite altimeter data is a key challenge in spatial oceanography, especially with the upcoming wide-swath SWOT (Surface Ocean and Water Topography) altimeter mission. Operational systems however generally fail to retrieve mesoscale dynamics for horizontal scales below 100 km and time-scale below 10 days. Here, we address this challenge through the 4DVarnet framework, an end-to-end neural scheme backed on a variational data assimilation formulation. We introduce a parametrization of the 4DVarNet scheme dedicated to the space-time interpolation of satellite altimeter data. Within an observing system simulation experiment (NATL60), we demonstrate the relevance of the proposed approach both for nadir and nadir+swot altimeter configurations for two contrasted case-study regions in terms of upper ocean dynamics. We report relative improvement with respect to the operational optimal interpolation between 30 % and 60 % in terms of reconstruction error. Interestingly, for the nadir+swot altimeter configuration, we reach resolved space-time scales below 70 km and 7 days. The code is open-source to enable reproductibility and future collaborative developments. Beyond its applicability to large-scale domains, we also address uncertainty quantification issues and generalization properties of the proposed learning setting. We discuss further future research avenues and extensions to other ocean data assimilation and space oceanography challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.