Significant cardio-respiratory fluctuations are often observed during and after an epileptic seizure event. The mechanisms underlying these acute modifications are considered to be involved in sudden and unexpected death in epilepsy (SUDEP). We hypothesize that these acute events are mediated by specific dynamics of the autonomic nervous system (ANS). However, the evaluation of the ANS during seizures remains particularly challenging, mainly due to the lack of observability. Computational modelling could help to override these limitations, to assess ANS modulation and to evaluate this hypothesis. In this study, we propose and apply a recursive identification algorithm of a system-level model of the autonomic modulation of the sino-atrial node, integrating a Tikhonov regularization, in order to assess sympathetic and parasympathetic activities during ictal tachy-bradycardia events. We evaluate the feasibility of the method on heart rate (HR) data from 4 seizures observed in the same patient. After parameter optimization and identification we were able to reproduce observed HR data with a maximum root mean squared error equals to 1.7bpm. The estimated autonomic series show sympathetic activation and parasympathetic inhibition at the seizure onset, and a massive vagal discharge as the leading factor to ictal bradycardia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.