International audienceThis paper concerns graph spanners that approximate multipaths between pair of vertices of an undirected graphs with $n$ vertices. Classically, a spanner $H$ of stretch $s$ for a graph $G$ is a spanning subgraph such that the distance in $H$ between any two vertices is at most $s$ times the distance in $G$. We study in this paper spanners that approximate short cycles, and more generally $p$ edge-disjoint paths with $p>1$, between any pair of vertices. For every unweighted graph $G$, we construct a $2$-multipath $3$-spanner of $O(n^3/2)$ edges. In other words, for any two vertices $u,v$ of $G$, the length of the shortest cycle (with no edge replication) traversing $u,v$ in the spanner is at most thrice the length of the shortest one in $G$. This construction is shown to be optimal in term of stretch and of size. In a second construction, we produce a $2$-multipath $(2,8)$-spanner of $O(n^3/2)$ edges, i.e., the length of the shortest cycle traversing any two vertices have length at most twice the shortest length in $G$ plus eight. For arbitrary $p$, we observe that, for each integer $k\ge 1$, every weighted graph has a $p$-multipath $p(2k-1)$-spanner with $O(p n^1+1/k)$ edges, leaving open the question whether, with similar size, the stretch of the spanner can be reduced to $2k-1$ for all $p>1$
Motivated by multipath routing, we introduce a multi-connected variant of spanners. For that purpose we introduce the p-multipath cost between two nodes u and v as the minimum weight of a collection of p internally vertex-disjoint paths between u and v. Given a weighted graph G, a subgraph H is a p-multipath s-spanner if for all u, v, the p-multipath cost between u and v in H is at most s times the p-multipath cost in G. The s factor is called the stretch.Building upon recent results on fault-tolerant spanners, we show how to build p-multipath spanners of constant stretch and ofÕ(n 1+1/k ) edges 1 , for fixed parameters p and k, n being the number of nodes of the graph. Such spanners can be constructed by a distributed algorithm running in O(k) rounds.Additionally, we give an improved construction for the case p = k = 2. Our spanner H has O(n 3/2 ) edges and the p-multipath cost in H between any two node is at most twice the corresponding one in G plus O(W ), W being the maximum edge weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.