In this work, we use percolation theory to study the feasibility of large-scale connectivity of relay-augmented deviceto-device (D2D) networks in an urban scenario featuring a haphazard system of streets and canyon shadowing allowing only for line-of-sight (LOS) communications in a finite range. We use a homogeneous Poisson-Voronoi tessellation (PVT) model of streets with homogeneous Poisson users (devices) on its edges and independent Bernoulli relays on the vertices. Using this model, we demonstrate the existence of a minimal threshold for relays below which large-scale connectivity of the network is not possible, regardless of all other network parameters. Through simulations, we estimate this threshold to 71.3%. Moreover, if the mean street length is not larger than some threshold (predicted to 74.3% of the communication range; which might be the case in a typical urban scenario) then any (whatever small) density of users can be compensated by equipping more crossroads with relays. Above this latter threshold, good connectivity requires some minimal density of users, compensated by the relays in a way we make explicit. The existence of the above regimes brings interesting qualitative arguments to the discussion on the possible D2D deployment scenarios.
It has been shown that deploying device-to-device (D2D) networks in urban environments requires equipping a considerable proportion of crossroads with relays. This represents a necessary economic investment for an operator. In this work, we tackle the problem of the economic feasibility of such relayassisted D2D networks. First, we propose a stochastic model taking into account a positive surface for streets and crossroads, thus allowing for a more realistic estimation of the minimal number of needed relays. Secondly, we introduce a cost model for the deployment of relays, allowing one to study operators' D2D deployment strategies. We investigate the example of an uberizing neo-operator willing to set up a network entirely relying on D2D and show that a return on the initial investment in relays is possible in a realistic period of time, even if the network is funded by a very low revenue per D2D user. Our results bring quantitative arguments to the discussion on possible uberization scenarios of telecommunications networks.
In this work, we study a new model for continuum line-of-sight percolation in a random environment driven by the Poisson–Voronoi tessellation in the d-dimensional Euclidean space. The edges (one-dimensional facets, or simply 1-facets) of this tessellation are the support of a Cox point process, while the vertices (zero-dimensional facets or simply 0-facets) are the support of a Bernoulli point process. Taking the superposition Z of these two processes, two points of Z are linked by an edge if and only if they are sufficiently close and located on the same edge (1-facet) of the supporting tessellation. We study the percolation of the random graph arising from this construction and prove that a 0–1 law, a subcritical phase, and a supercritical phase exist under general assumptions. Our proofs are based on a coarse-graining argument with some notion of stabilization and asymptotic essential connectedness to investigate continuum percolation for Cox point processes. We also give numerical estimates of the critical parameters of the model in the planar case, where our model is intended to represent telecommunications networks in a random environment with obstructive conditions for signal propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.