Ocean going vessels are one of the largest uncontrolled sources of pollutants and the emissions data from these sources are scarce. This paper provides the emission measurements of gases, particulate matter (PM), metals, ions, elemental and organic carbon, conducted from the main engine of an ocean going PanaMax class container vessel, at certification cycle and at vessel speed reduction mode, during actual operation at sea. The weighted emission factor (g kW À1 h À1) of PM and NO x were 1.64 and 18.2, respectively, for the main engine operating on a 2.05 wt% sulfur heavy fuel oil (HFO). The NO x emissions at the vessel speed reduction mode (8% of full load) are 30% higher than at 52% engine power, the normal cruise speed. The composition of PM, from main engine is dominated by sulfate and water bound with sulfate (about 80% of total PM) and organic carbon constitutes about 15% of the PM. Sulfur, vanadium and nickel are the significant elements in the exhaust from the engine running on the HFO. At the point of sampling 3.7-5.0% of the fuel sulfur was converted to sulfate.
Real time secondary organic aerosol (SOA) density evolution for m-xylene photo-oxidation and α-pinene ozonolysis was obtained using an Aerosol Particle Mass Analyzer (APM)/Scanning Mobility Particle Spectrometer (SMPS) setup, which has been modified to achieve higher transmission of particles and improved sampling frequency. The aerosol density of SOA generated from α-pinene ozonolysis was found to be 1.24 ± 0.03 g/cm 3 while the aerosol generated from m-xylene photo-oxidation was determined to be 1.35 ± 0.03 g/cm 3 . These results confirm the measurement approach from a combined SMPS and Aerodyne Aerosol Mass Spectrometer (AMS) system and are found to be within good agreement with the effective density measurements.
Amines in fine particulate matter have been detected and quantified during ambient studies of winter inversions in Logan, UT, using aerosol mass spectrometry. Amine-related compounds account for 0.5-6 microg m(-3) of fine particulate mass during some wintertime periods. The amine contributions sometimes show a clear diurnal pattern, reaching peak concentrations during the middle of the nightwhile decreasing during the morning and afternoon. Smog chamber reactions show that the reaction of tertiary amines with nitrate radical can account for this behavior in the atmosphere. The lower bound reaction rate of trimethylamine and nitrate radical is estimated at 4.4 x 10(-16) cm3/molecules/s with a conversion rate to the aerosol phase of approximately 65%. This suggests that amines could be a contributor to secondary organic aerosol formation in areas where nitrate radical is a significant player in oxidation chemistry.
Abstract. Primary aliphatic amines are an important class of nitrogen containing compounds emitted from automobiles, waste treatment facilities and agricultural animal operations. A series of experiments conducted at the UC-Riverside/CE-CERT Environmental Chamber is presented in which oxidation of methylamine, ethylamine, propylamine, and butylamine with O 3 and NO 3 have been investigated. Very little aerosol formation is observed in the presence of O 3 only. However, after addition of NO, and by extension NO 3 , large aerosol mass yields (∼44% for butylamine) are seen. Aerosol generated was determined to be organic in nature due to the small fraction of NO and NO 2 in the total signal (<1% for all amines tested) as detected by an aerosol mass spectrometer (AMS). We propose a reaction mechanism between carbonyl containing species and the parent amine leading to formation of particulate imine products. These findings can have significant impacts on rural communities with elevated nighttime PM loadings, when significant levels of NO 3 exist.
Formation of secondary organic aerosol (SOA) from m-xylene photoxidation in the absence of NOx was investigated in a series of smog chamber experiments. Experiments were performed in dry air and in the absence of seed aerosol with H2O2 photolysis providing a stable hydroxyl radical (OH radical) source. SOA formation from this study is exceptionally higher than experiments with existence of NOx. The experiments with elevated HO2 levels indicate that organic hydroperoxide compounds should contribute to SOA formation. Nitrogen oxide (NO) is shown to reduce aerosol formation; the constant aerosol formation rate obtained before addition of NO and after consumption of NO strongly suggests that aerosol formation is mainlythrough reactions with OH and HO2 radicals. In addition, a density of 1.40 +/- 0.1 g cm(-3) for the SOA from the photooxidation of m-xylene in the absence of NOx has been measured, which is significantly higherthan the currently used unit density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.