Over the past four decades, energy microsources based on piezoelectric energy harvesting have been intensively studied for applications in autonomous sensor systems. The research is triggered by the quest for replacing standard lead-based piezoelectric ceramics with environmentally friendly lead-free materials and potential deployment of energy-harvesting microsystems in internet of things, internet of health, “place and leave” sensors in infrastructures and agriculture monitoring. Moreover, futher system miniaturization and co-integration of functions are required in line with a desired possibility to increase the harvested power density per material volume. Thus, further research efforts are necessary to develop more sustainable materials/systems with high-performance. This paper gives a comprehensive overview on the processing and functional testing the lead-free bulk materials and thin films and discuss their potential in the applications in the stress- and strain-driven piezoelectric energy harvesting. This includes the methodology of estimation of the substrate clamping and orientation/texture effects in the thin films, and identification of orientations offering high figure of merit. The ability to control film orientation of different lead-free materials is reviewed and the expected piezoelectric performances are compared with the ones reported in literature.
Metal organic chemical vapor deposition (MOCVD) is exploited as a synthetic route to produce Ba and Ti co-doped BiFeO3 thin films. A facile approach based on a molten multi-component source,...
Pyroelectric materials are very promising for thermal energy harvesting applications. To date, lead‐based systems are the foremost studied materials in this field. A facile and simple metal organic chemical vapor deposition route is applied for the fabrication of lead‐free, high quality, epitaxial Bi(1−x)DyxFeO3 (x = 0, 0.06, 0.08, 0.11) thin films deposited on conductive SrTiO3:Nb (100) single crystal substrates. The films are studied by structural, morphological, compositional, and functional characterization. The correlation between the Dy‐doping amount and the dielectric properties is thoroughly investigated. Unipolar polarization–electric field loops and permittivity measurements show the important impact of Dy on ferroelectric, dielectric, and pyroelectric properties. Dy doping increases considerably the dielectric response, but much more the pyroelectric coefficient, up to a concentration of 8% Dy. The films are self‐poled, which is an ideal situation for pyroelectric applications. The best figure of merit for pyroelectric energy harvesting, FE, is 82 J m−3 K−2, showing a factor increase of 2.6 as compared to the undoped film of the sample series. It constitutes a factor 4.5 improvement as compared to previous results obtained on BiFeO3 based thin films.
This paper presents a simple and optimized metal organic chemical vapor deposition (MOCVD) protocol for the deposition of perovskite BiFeO3 films on silicon-based substrates, in order to move toward the next generation of lead-free hybrid energy harvesters. A bi-metal mixture that is composed of Bi(phenyl)3, and Fe(tmhd)3 has been used as a precursor source. BiFeO3 films have been grown by MOCVD on IrO2/Si substrates, in which the conductive IrO2 functions as a bottom electrode and a buffer layer. BiFeO3 films have been analyzed by X-ray diffraction (XRD) for structural characterization and by field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis for the morphological and chemical characterizations, respectively. These studies have shown that the deposited films are polycrystalline, pure BiFeO3 phase highly homogenous in morphology and composition all over the entire substrate surface. Piezoelectric force microscopy (PFM) and Piezoelectric Force Spectroscopy (PFS) checked the piezoelectric and ferroelectric properties of the film.
Multiferroic materials, including lead-free BiFeO3, are of special interest for their challenging functional properties which can suit various applications. This paper reports the optimization of the MOCVD process used for...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.