Metachronal waves commonly exist in natural cilia carpets. These emergent phenomena, which originate from phase differences between neighbouring self-beating cilia, are essential for biological transport processes including locomotion, liquid pumping, feeding, and cell delivery. However, studies of such complex active systems are limited, particularly from the experimental side. Here we report magnetically actuated, soft, artificial cilia carpets. By stretching and folding onto curved templates, programmable magnetization patterns can be encoded into artificial cilia carpets, which exhibit metachronal waves in dynamic magnetic fields. We have tested both the transport capabilities in a fluid environment and the locomotion capabilities on a solid surface. This robotic system provides a highly customizable experimental platform that not only assists in understanding fundamental rules of natural cilia carpets, but also paves a path to cilia-inspired soft robots for future biomedical applications.
Tendon actuation is one of the most prominent actuation principles for continuum robots. To date, a wide variety of modelling approaches has been derived to describe the deformations of tendon-driven continuum robots. Motivated by the need for a comprehensive overview of existing methodologies, this work summarizes and outlines state-of-the-art modelling approaches. In particular, the most relevant models are classified based on backbone representations and kinematic as well as static assumptions. Numerical case studies are conducted to compare the performance of representative modelling approaches from the current state-of-the-art, considering varying robot parameters and scenarios. The approaches show different performances in terms of accuracy and computation time. Guidelines for the selection of the most suitable approach for given designs of tendon-driven continuum robots and applications are deduced from these results.
Concentric tube robot (CTR) is a promising class of continuum robots for medical interventions given their compactness and dexterity. Their dexterity is in particular being used to achieve so called Follow-the-Leader (FTL) deployments, where the tip path draws the shape of the robot. During this kind of deployment they can however be subject to elastic instabilities, and the number of reachable configurations may vary for a given state of actuators. These cardinality and stability changes need therefore to be predicted during CTR design. Available methods and results are limited, with restrictive assumptions on number and properties of tubes. We therefore propose in this paper a numerical framework for the cardinality and stability assessment of CTR. It is based on the association of dynamic relaxation, continuation method and bifurcation analysis. The numerical framework is validated by reproducing reference results on the stability and cardinality of two-tube robots. Then, new results on three-tube CTR deploying in a FTL manner are presented. The framework genericity allows in particular to provide new insights on the behaviour of CTR with helical-shaped tubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.