Genetic mutations in nitrogen permease regulator-like 2 (NPRL2) are associated with a wide spectrum of familial focal epilepsies, autism, and sudden unexpected death of epileptics (SUDEP), but the mechanisms by which NPRL2 contributes to these effects are not well known. NPRL2 is a requisite subunit of the Gap Activity TOward Rags 1 (GATOR1) complex, which functions as a negative regulator of mammalian Target Of Rapamycin Complex 1 (mTORC1) kinase when intracellular amino acids are low.Here we show that loss of NPRL2 expression in mouse excitatory glutamatergic neurons causes seizures prior to death, consistent with SUDEP in humans with epilepsy. Additionally, the absence of NPRL2 expression increases mTORC1-dependent signal transduction and significantly alters amino acid homeostasis in the brain. Loss of NPRL2 reduces dendritic branching and increases the strength of electrically stimulated action potentials in neurons. The increased action potential strength is consistent with elevated expression of epilepsy-linked, voltage-gated sodium channels in the NPRL2-deficient brain. Targeted deletion of NPRL2 in primary neurons increases the expression of sodium channel Scn1A, whereas treatment with the pharmacological mTORC1 inhibitor called rapamycin prevents Scn1A upregulation. These studies demonstrate a novel role of NPRL2 and mTORC1 signaling in the regulation of sodium channels, which can contribute to seizures and early lethality.Significance Statement: NPRL2 is a requisite subunit of the epilepsy-linked GATOR1 complex that functions as a negative regulator of mTORC1 kinase when intracellular amino acids are limited. Here we report the generation and characterization of a new neurological model of GATOR1-dependent mTORopathy, caused by the loss of NPRL2 function in glutamatergic neurons. Loss of NPRL2 increases mTORC1 signal transduction, significantly alters amino acid homeostasis in the brain, and causes SUDEP.In addition, loss of NPRL2 increases the strength of electrically stimulated action potentials and the expression of epilepsy-linked sodium channels. These data reveal an unanticipated link between 3 intracellular amino acid signaling by NPRL2 and a novel mTORC1-dependent regulation of sodiumchannel expression in epilepsy.
BACKGROUND: Nav1.5, which is encoded by the SCN5A gene, is the predominant voltage-gated Na+ channel in the heart. Several mutations of this gene have been identified and have been reported to be involved in several cardiac rhythm disorders, including type 3 long QT syndrome (LQT3), that can cause sudden cardiac death. We analyzed the biophysical properties of two novel variants of the Nav1.5 channel (Q1491H and G1481V) detected in 5-and 12-week-old infants diagnosed with a prolonged QT interval. METHODS: The Nav1.5 wild-type (WT) and the Q1491H and G1481V mutant channels were reproduced in vivo. WT or the mutant channels were co-transfected in HEK 293 cells with the beta 1 regulatory subunit. Na+ currents were recorded using the whole-cell configuration of the patch-clamp technique. RESULTS: The Q1491H mutant channel exhibited a lower current density, a persistent Na+ current, an enhanced window current due to a +20-mV shift of steady-state inactivation, a +10-mV shift of steady-state activation, a faster onset of slow inactivation, and a recovery from fast inactivation with fast and a slow time constants of recovery. The G1481V mutant channel exhibited an increase in current density and a +7-mV shift of steady-state inactivation. The observed defects are characteristic of gain-of-function mutations typical of LQT3. DISCUSSION AND CONCLUSION: The 5-and 12-week-old infants displayed prolonged QT intervals. Our analyses of the Q1491H and G1481V mutations correlated with the clinical diagnosis. The observed biophysical dysfunctions associated with both mutations were most likely responsible for the sudden deaths of the two infants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.