International audienceThis work presents a detailed, multiscale, spatially resolved study of the microstructure of an electron beam butt weld of the EN-AW 7020 (Al-Zn-Mg) alloy. Using a combination of optical, scanning and transmission electron microscopy, differential scanning calorimetry, and small-angle X-ray scattering, the distribution of phases in the different areas of the heat-affected zone and of the fusion zone is quantitatively characterized, for two different aging states: naturally aged after welding and artificially aged at 423 K (150 A degrees C). The heat-affected zone consists of regions experiencing different levels of precipitate dissolution and coarsening during welding as well as new precipitation during post-welding heat treatment (PWHT). The microstructure of the fusion zone is typical from a fast solidification process, with a strong solute segregation in the interdendritic zones. The precipitate distribution after PWHT follows this solute distribution, and the resulting hardness is much lower than the relatively homogeneous value in the base metal and the heat-affected zone
During conventional shot peening on metastable austenitic steels, martensitic transformation occurs in addition to plastic straining. In this work, the impact of a single spherical steel shot on a AISI 301LN steel was studied. The volume fraction of martensite, residual stresses in both phases were determined in the vicinity of the dent as a function of the shot velocity and diameter. An elasto-plastic two phase model that includes martensitic phase transformation was adapted to model mechanical and microstructural fields and implemented in Abaqus Explicit for the 2D simulation of a single shot impact. It was found, for instance, that the martensitic transformation takes place only under the dent and that martensite is in tension at the surface while austenite is in compression. Simulation results of stress levels showed a good agreement with experimental stresses determined by X-ray diffraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.