The Ixodes ricinus species complex is a group of ticks distributed in almost all geographic regions of the world. Lyme borreliosis spirochetes are primarily transmitted by tick species within this complex. It has been hypothesized that the Lyme vector ticks around the world are closely related and represent a monophyletic group. This implies that vector competence in ixodid ticks for Lyme agents might have evolved only once. To test this hypothesis, we used a molecular phylogenetic approach. Two fragments of mitochondrial 16S ribosomal deoxyribonucleic acid were sequenced from 11 species in the I. ricinus complex and from 16 other species of Ixodes. Phylogenetic analysis using Bayesian methodology indicated that the I. ricinus complex is not a monophyletic group unless 3 additional Ixodes species are included in it. The known major vectors of Lyme disease agents in different areas of the world are not sister taxa. This suggests that acquisition of the ability to transmit borreliosis agents in species of Ixodes may have multiple origins.
Intracellular endosymbionts, Wolbachia spp., have been reported in many different orders of insects and in nematodes but not previously in fleas. This is the first conclusive report of Wolbachia spp. within members of the Siphonaptera. Using nested polymerase chain reaction (PCR) targeting of the 16S ribosomal RNA gene, we screened for Wolbachia spp. in fleas collected from 3 counties in Georgia and 1 in New York. The prevalence of Wolbachia spp. detected varied among the 6 different species screened: 21% in the cat flea Ctenocephalides felis (n = 604), 7% in the dog flea C. canis (n = 28), 25% in Polygenus gwyni (n = 8), 80% in Orchopeas howardi (n = 15), 94% in Pulex simulans (n = 255), and 24% in the sticktight flea Echidnophaga gallinacea (n = 101). Wolbachia spp. infection in fleas was confirmed by sequencing positive PCR products, comparing sequenced 16S ribosomal DNA (rDNA) with Wolbachia spp. sequences in GenBank using BLAST search, and subjecting sequence data to phylogenetic analysis. For further confirmation, 16S rDNA-positive samples were reamplified using the wsp gene.
Evolution and phylogenetic utility of the period gene are explored through sequence analysis of a relatively conserved 909-bp fragment in 26 lepidopteran species. Taxa range from tribes to superfamilies, primarily within the putative clade Macrolepidotera plus near outgroups, and include both strongly established and problematic groupings. Their divergence dates probably range from the late Cretaceous through much of the Tertiary. Comparisons within the same set of closely related species show that amino acid substitutions in period occur 4.9 and 44 times as frequently as they do in two other nuclear genes--dopa decarboxylase and elongation factor-1 alpha, respectively. In contrast, rates of observed synonymous substitution are within 60% of each other for these three genes. Synonymous changes in period approach saturation by the family level, whereas nonsynonymous and amino acid divergences across the Macrolepidoptera are less than half the maximal values reported for this gene. Phylogenetic analyses of period strongly supported groupings at the family level and below. In contrast to previous analyses at this level with other nuclear genes, much of the information lies in nonsynonymous change. Relationships up to the superfamily level were recovered with decreasing effectiveness, and little, if any, signal was apparent regarding relationships among superfamilies. This could reflect rapid radiation of the superfamilies, however, rather than saturation in the period locus; thus, period, in combination with other genes, remains a plausible candidate for approaching the difficult problems of lepidopteran family and superfamily relationships.
The lack of a readily accessible roster of nuclear genes informative at various taxonomic levels is a bottleneck for molecular systematics. In this report, we describe the first phylogenetic application of the sequence that encodes the enzyme dopa decarboxylase (DDC). For 14 test species within the noctuid moth subfamily Heliothinae that represent the previously best-supported groupings, a 690-bp fragment of DDC resolved relationships that are largely concordant with prior evidence from elongation factor-1 alpha (EF-1 alpha), morphology, and allozymes. Although both synonymous and nonsynonymous changes occur in DDC substantially more rapidly than they do in EF-1 alpha, DDC divergences within Heliothinae are below saturation at all codon positions. Analysis of DDC and EF-1 alpha in combination resulted in increased bootstrap support for several groupings. As a first estimate of previously unresolved relationships, DDC sequences were analyzed from 16 additional heliothines, for a total of 30 heliothine species plus outgroups. Previous relationships based on DDC were generally stable with increased taxon sampling, although a two- to eightfold downweighting of codon position 3 was required for complete concordance with the 14-species result. The weighted strict consensus trees were largely resolved and were congruent with most although not all previous hypotheses based on either morphology or EF-1 alpha. The proposed phylogeny suggests that the major agricultural pest heliothines belong to a single clade, characterized by polyphagy and associated life history traits, within this largely host-specific moth subfamily. DDC holds much promise for phylogenetic analysis of Tertiary-age animal groups.
Human monocytic ehrlichiosis is an emerging zoonosis caused by infection with Ehrlichia chaffeensis Anderson, Dawson, Jones & Wilson, which is transmitted to mammals by ixodid ticks. Prevalence of infected ticks and distribution of infection foci indicate relative risk of human exposure to ehrlichiosis and may be influenced by factors such as geographic isolation, human disturbance, and the availability of suitable mammalian reservoir hosts. To test, this, individual and pooled lone star ticks, Amblyomma americanum (L.), were collected from three populations from the Georgia coast (1 mainland site and two barrier islands) and screened for E. chaffeensis. A species-specific, nested polymerase chain reaction (PCR) assay was used to amplify a 572 bp fragment of the E. chaffeensis 16S rRNA gene from infected ticks. PCR product specificity was confirmed by nucleotide sequencing. Our results showed the prevalence of infected ticks to be 0.0% (n = 151), 0.9% (n = 111), and 9.3% (n = 129) for Sapelo Island, St. Catherine's Island, and Fort McAllister, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.