Within the context of time dissemination techniques for power systems applications, the paper discusses the use of the White Rabbit (WR) protocol for synchrophasor networks. Specifically, the paper presents a Phasor Measurement Unit (PMU) integrating the WR technology and its experimental validation with a focus on the synchrophasor phase estimation in steady state conditions, by using a PMU calibrator generating the reference signals. We further compare the accuracy of the developed PMU with other state-of-the-art time synchronization technologies for PMUs. i.e., Global Positioning System (GPS) and Precision Time Protocol (PTP), demonstrating applicability of WR for PMU sensing networks.
The paper describes a centralized Under Frequency Load Shedding (UFLS) method, where load shedding decisions are based on the solution of an optimization problem. The proposed approach anticipates the evolution of the grid frequency trajectory by means of a system dynamic model. Moreover, the method is augmented by the equations derived from the Optimal Power Flow (OPF) problem allowing to constrain asymptotic values of node voltages and line currents. The proposed OPFbased method differs from traditional UFLS methods as it enables the user to compute the minimum amount of load to be shed and, at the same time, provides a feasible grid trajectory. The trajectory of the system frequency due to the contingency, and the subsequent load shedding, is predicted over the entire time horizon by means of a second-order dynamic model. The feasibility and applicability of the proposed method are assessed by means of numerical simulations carried out using a real-time simulator, where the time-domain full-replica model of the IEEE 39-bus system has been implemented. Two contingency scenarios are investigated and the performance of the proposed method is compared against the UFLS strategy recommended by the European Network of Transmission System Operators (ENTSO-E). The metrics used for such a comparison are the amount of energy not served, the frequency variation and the violation of the grid safety constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.