The emergence of the novel SARS-CoV-2 virus is the most important public-health issue of our time. Understanding the diverse clinical presentations of the ensuing disease, COVID-19, remains a critical unmet need. Here we present a comprehensive listing of the diverse clinical indications associated with COVID-19. We explore the theory that anti-SARS-CoV-2 antibodies could cross-react with endogenous human proteins driving some of the pathologies associated with COVID-19. We describe a novel computational approach to estimate structural homology between SARS-CoV-2 proteins and human proteins. Antibodies are more likely to interrogate 3D-structural epitopes than continuous linear epitopes. This computational workflow identified 346 human proteins containing a domain with high structural homology to a SARS-CoV-2 Wuhan strain protein. Of these, 102 proteins exhibit functions that could contribute to COVID-19 clinical pathologies. We present a testable hypothesis to delineate unexplained clinical observations vis-à-vis COVID-19 and a tool to evaluate the safety-risk profile of potential COVID-19 therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.