In this paper, we present the Python package PSY-TaLiRo which is a toolbox for temporal logic robustness guided falsification of Cyber-Physical Systems (CPS). PSY-TaLiRo is a completely modular toolbox supporting multiple temporal logic offline monitors as well as optimization engines for test case generation. Among the benefits of PSY-TaLiRo is that it supports search-based test generation for many different types of systems under test. All PSY-TaLiRo modules can be fully modified by the users to support new optimization and robustness computation engines as well as any System under Test (SUT).
Requirements driven search-based testing (also known as falsification) has proven to be a practical and effective method for discovering erroneous behaviors in Cyber-Physical Systems. Despite the constant improvements on the performance and applicability of falsification methods, they all share a common characteristic. Namely, they are best-effort methods which do not provide any guarantees on the absence of erroneous behaviors (falsifiers) when the testing budget is exhausted. The absence of finite time guarantees is a major limitation which prevents falsification methods from being utilized in certification procedures. In this paper, we address the finite-time guarantees problem by developing a new stochastic algorithm. Our proposed algorithm not only estimates (bounds) the probability that falsifying behaviors exist, but also it identifies the regions where these falsifying behaviors may occur. We demonstrate the applicability of our approach on standard benchmark functions from the optimization literature and on the F16 benchmark problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.