A growing number of studies suggest that the development of compulsive drug seeking and taking depends on dorsostriatal mechanisms. We previously observed that ex vivo acute exposure of the dorsal striatum to, and withdrawal from, alcohol induces long-term facilitation (LTF) of the activity of NR2B-containing NMDA receptors (NR2B-NMDARs) in a mechanism that requires the Src family protein tyrosine kinase (PTK), Fyn (Wang et al., 2007). In the present study, we first compared alcohol's actions in rat dorsomedial (DMS) and the dorsolateral (DLS) subregions of the striatum, which differ in their anatomical connectivity and function. We found that alcoholmediated induction of LTF of NR2B-NMDAR activity is centered in the DMS. Next, we tested whether in vivo exposure of rats to alcohol leads to long-term adaptations of the NMDAR system in the DMS. We observed that repeated daily administration of alcohol results in a long-lasting increase in the activity of the NR2B-NMDARs in the DMS. The same procedure leads to a prolonged activation of Fyn, increased NR2B phosphorylation, and membrane localization of the subunit. Importantly, similar electrophysiological and biochemical modifications were observed in the DMS of rats that consumed large quantities of alcohol. Finally, we show that inhibition of NR2B-NMDARs or Src family PTKs in the DMS, but not in the DLS, significantly decreases operant self-administration of alcohol and reduces alcohol-priming-induced reinstatement of alcohol seeking. Our results suggest that the upregulation of NR2B-NMDAR activity within the DMS by alcohol contributes to the maladaptive synaptic changes that lead to excessive alcohol intake and relapse.
Alcohol addiction is a chronically relapsing disorder that includes certain maladaptive learning and memory. The serine and threonine kinase complex, mammalian target of rapamycin complex 1 (mTORC1), has been implicated in synaptic plasticity, learning, and memory by controlling protein translation. Here we show that administration of alcohol and excessive voluntary consumption of alcohol induce the activation of the mTORC1-mediated signaling pathway in the nucleus accumbens (NAc) of rodents. We further show that the protein expression levels of GluR1 and Homer, two synaptic proteins whose translation has been shown to be modulated by mTORC1, are up-regulated in the NAc of rodents with a history of excessive alcohol consumption. In addition, our results document that the Food and Drug Administration-approved inhibitor of mTORC1, rapamycin, decreases expression of alcohol-induced locomotor sensitization and place preference, as well as excessive alcohol intake and seeking in preclinical rodent models of alcohol abuse. Together, our results suggest that mTORC1 within the NAc is a contributor to molecular mechanisms underlying alcohol-drinking behaviors. Furthermore, despite its massive health and socioeconomic impact worldwide, pharmacotherapies for alcohol abuse and addiction remain limited. Our data therefore put forward the possibility that targeting the mTORC1 signaling cascade is an innovative and valuable strategy for the treatment of alcohol use and abuse disorders.addiction | mTOR | ethanol | reward | nucleus accumbens
Relapse to alcohol abuse is a critical clinical issue, frequently caused by cue-induced drug craving. Therefore, disruption of the memory for the cue-alcohol association is expected to prevent relapse. It is increasingly accepted that memories become labile and erasable soon after their reactivation through retrieval, during a memory reconsolidation process that depends on protein synthesis. Here, we show that reconsolidation of alcohol-related memories triggered by the sensory properties of alcohol itself (odor and taste) activates mammalian target of rapamycin complex 1 (mTORC1) in select amygdalar and cortical regions in rats, resulting in increased levels of several synaptic proteins. Furthermore, systemic or central amygdalar (CeA) inhibition of mTORC1 during reconsolidation disrupts alcohol-cue associated memories, leading to a long-lasting suppression of relapse. Our findings provide evidence that the mTORC1 pathway and its downstream substrates play a crucial role in alcohol-related memory reconsolidation, and highlight this pathway as a therapeutic target to prevent relapse.
We previously showed that infusion of glial cell line-derived neurotrophic factor (GDNF) into the ventral tegmental area (VTA) rapidly reduces alcohol intake and relapse (Carnicella et al., 2008; Carnicella et al., 2009a), and increases dopamine (DA) levels in the nucleus accumbens (NAc) of alcohol-naïve rats (Wang et al., 2010). Withdrawal from excessive alcohol intake is associated with a reduction in NAc DA levels, whereas drug-induced increases in NAc DA levels are associated with reward. We therefore tested whether GDNF in the VTA reverses alcohol withdrawal-associated DA deficiency and/or possesses rewarding properties. Rats were trained for 7 weeks to consume high levels of alcohol (5.47 ± 0.37 g/kg/24-hrs) in intermittent access to 20% alcohol in a 2-bottle choice procedure. Using in vivo microdialysis, we show that 24-hrs withdrawal from alcohol causes a substantial reduction in NAc DA overflow, which was reversed by intra-VTA GDNF infusion. Using conditioned place preference (CPP) paradigm, we observed that GDNF on its own does not induce CPP, suggesting that the growth factor is not rewarding. However, GDNF blocked acquisition and expression of alcohol-CPP. In addition, GDNF induced a downward shift in the dose-response curve for operant self-administration of alcohol, further suggesting that GDNF suppresses, rather than substitutes for, the reinforcing effects of alcohol. Our findings suggest that GDNF reduces alcohol-drinking behaviors by reversing an alcohol-induced allostatic DA deficiency in the mesolimbic system. In addition, as it lacks abuse liability, the study further highlights GDNF as a promising target for treatment of alcohol use/abuse disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.