Abstract:The investigations of hidden attractors are mainly in continuous-time dynamic systems, and there are a few investigations of hidden attractors in discrete-time dynamic systems. The classical chaotic attractors of the Logistic map, Tent map, Henon map, Arnold's cat map, and other widely-known chaotic attractors are those excited from unstable fixed points. In this paper, the hidden dynamics of a new two-dimensional map inspired by Arnold's cat map is investigated, and the existence of fixed points and their stabilities are studied in detail.
In this paper, a new three-dimensional chaotic system is proposed for image encryption. The core of the encryption algorithm is the combination of chaotic system and compressed sensing, which can complete image encryption and compression at the same time. The Lyapunov exponent, bifurcation diagram and complexity of the new three-dimensional chaotic system are analyzed. The performance analysis shows that the chaotic system has two positive Lyapunov exponents and high complexity. In the encryption scheme, a new chaotic system is used as the measurement matrix for compressed sensing, and Arnold is used to scrambling the image further. The proposed method has better reconfiguration ability in the compressible range of the algorithm compared with other methods. The experimental results show that the proposed encryption scheme has good encryption effect and image compression capability.
In this paper, a novel image encryption scheme based on a fractional-order Henon chaotic map, a two-dimensional (2D) Discrete Wavelet Transform (DWT) and a four-dimensional (4D) hyperchaotic system is proposed. Firstly, the original image is transformed and scrambled by the 2D DWT, and then the image is shuffled with the fractional-order Henon chaotic time series. Finally, the shuffled image is diffused and encrypted by the 4D hyperchaos system. Through the application of DWT and high-low dimensional chaotic systems, the encryption effect of this algorithm is better than those done by single or ordinary chaotic encryption algorithm, and it has a larger key space and higher security. The experimental tests show that the system has good statistical characteristics, such as histogram analysis, correlation coefficient analysis, key space and key sensitivity, information entropy analysis and so on. The encryption algorithm also passes the relevant security attack tests with good security.
The chaotic system is widely used in chaotic cryptosystem and chaotic secure communication. In this paper, a universal method for designing the discrete chaotic system with any desired number of positive Lyapunov exponents is proposed to meet the needs of hyperchaotic systems in chaotic cryptosystem and chaotic secure communication, and three examples of eight-dimensional discrete system with chaotic attractors, eight-dimensional discrete system with fixed point attractors and eight-dimensional discrete system with periodic attractors are given to illustrate how the proposed methods control the Lyapunov exponents. Compared to the previous methods, the positive Lyapunov exponents are used to reconstruct a hyperchaotic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.