The crack and carbonation of concrete pose a great challenge to its durability. Therefore, this paper studies the effect of cracks on the carbonation depth of cement paste under different factors. The relationship between carbonation and cracks was determined, and the carbonation mechanism of cement paste with cracks was clarified. The results show that a small water–binder ratio can effectively inhibit the carbonation process. The bidirectional carbonation enlarged the carbonation area around the crack. Within 21 days of the carbonation, the carbonation depth increased with carbonation time, and the Ca(OH)2 on the surface of the specimen was sufficient, allowing for a convenient chemical reaction with CO2. The influence of crack width on the carbonation process at the crack was greater than the influence of the crack depth. Carbonation influenced the hydration of cement-based materials, altering the types and quantities of hydration products. In conclusion, accurately predicting the regularity of carbonation in cracked structures is critical for improving the durability of concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.