The gold standard treatment for peripheral nerve injuries (PNIs) is the autologous graft, while it is associated with the shortage of donors and results in major complications. In the present study, we engineer a graphene mesh-supported double-network (DN) hydrogel scaffold, loaded with netrin-1. Natural alginate and gelatin-methacryloyl entangled hydrogel that is synthesized via fast exchange of ions and ultraviolet irradiation provide proper mechanical strength and excellent biocompatibility and can also serve as a reservoir for netrin-1. Meanwhile, the graphene mesh can promote the proliferation of Schwann cells and guide their alignments. This approach allows scaffolds to have an acceptable Young’s modulus of 725.8 ± 46.52 kPa, matching with peripheral nerves, as well as a satisfactory electrical conductivity of 6.8 ± 0.85 S/m. In addition, netrin-1 plays a dual role in directing axon pathfinding and neuronal migration that optimizes the tube formation ability at a concentration of 100 ng/mL. This netrin-1-loaded graphene mesh tube/DN hydrogel nerve scaffold can significantly promote the regeneration of peripheral nerves and the restoration of denervated muscle, which is even superior to autologous grafts. Our findings may provide an effective therapeutic strategy for PNI patients that can replace the scarce autologous graft.
Great controversy exists regarding the biologic responses of osteoblasts to X-ray irradiation, and the mechanisms are poorly understood. In this study, the biological effects of low-dose radiation on stimulating osteoblast proliferation, differentiation and fracture healing were identified using in vitro cell culture and in vivo animal studies. First, low-dose (0.5 Gy) X-ray irradiation induced the cell viability and proliferation of MC3T3-E1 cells. However, high-dose (5 Gy) X-ray irradiation inhibited the viability and proliferation of osteoblasts. In addition, dynamic variations in osteoblast differentiation markers, including type I collagen, alkaline phosphatase, Runx2, Osterix and osteocalcin, were observed after both low-dose and high-dose irradiation by Western blot analysis. Second, fracture healing was evaluated via histology and gene expression after single-dose X-ray irradiation, and low-dose X-ray irradiation accelerates fracture healing of closed femoral fractures in rats. In low-dose X-ray irradiated fractures, an increase in proliferating cell nuclear antigen (PCNA)-positive cells, cartilage formation and fracture calluses was observed. In addition, we observed more rapid completion of endochondral and intramembranous ossification, which was accompanied by altered expression of genes involved in bone remodeling and fracture callus mineralization. Although the expression level of several osteoblast differentiation genes was increased in the fracture calluses of high-dose irradiated rats, the callus formation and fracture union were delayed compared with the control and low-dose irradiated fractures. These results reveal beneficial effects of low-dose irradiation, including the stimulation of osteoblast proliferation, differentiation and fracture healing, and highlight its potential translational application in novel therapies against bone-related diseases.
BackgroundSepsis is a critical disease associated with extremely high mortality. Some severe forms of sepsis can induce brain injury, thus causing behavioral and cognitive dysfunction. Pyroptosis is a type of cell death that differs from apoptosis and plays an important role in the occurrence and development of infectious diseases, nervous system-related diseases. A recent study has found that there is pyroptosis in the hippocampus of sepsis-induced brain injury, but its mechanism and treatment scheme have not been evaluated.MethodsWe established immediately a septic rat model by cecal ligation and perforation (CLP) after administration with recombinant club cell protein (rCC16) and/or U46619 in different groups. The clinical performance, survival percentage, vital signs, and neurobehavioral scores were monitored at different time points. Cortical pathological changes were also examined. The expression of cortical nucleotide-binding domain leucine-rich repeat-containing pyrin domain-containing 3 (NLRP3), caspase-1, (p)-p38 mitogen-activated protein kinase (MAPK), and (p)-extracellular signal-related kinase (ERK) was detected by western blotting and immunofluorescence analysis. The levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha in the cortical supernatant were detected by enzyme-linked immunosorbent assay.ResultsCompared with the sham group, the clinical performance, survival percentage, vital signs, and severe cortical pathological changes in the CLP group were worse; NLRP3, caspase-1, and inflammatory factor levels were increased; and phosphorylation of p38 MAPK and ERK was also increased. Meanwhile, multiple indicators were deteriorated further after administration of U46619 in CLP rats. The clinical performance of CLP rats, however, was better after rCC16 administration; cortical pathological changes were attenuated; and NLRP3, caspase-1, and inflammatory factor levels and the phosphorylation of signaling pathway proteins (p38 MAPK and ERK) were reduced. Interestingly, the CLP rats showed the opposite changes in all indicators after administration with both rCC16 and U46619 when compared with those administered rCC16 alone.ConclusionsIn sepsis, rCC16 inhibits cortical pyroptosis through p38 MAPK and ERK signaling pathways. Meanwhile, rCC16 has a protective effect on newborn rats with sepsis, but it is not clear whether its mechanism is directly related to pyroptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.