Background & Aims Integrity of the intestinal epithelium is required for nutrition absorption and defense against pathogens. Claudins are cell adhesion molecules that localize at tight junctions (TJs); many are expressed in the intestinal tract, but little is known about their functions. Claudin-7 is unique in that it has a stronger basolateral membrane distribution than other claudins, which localize primarily to apical TJs in the intestinal epithelium. We investigated the basolateral functions of claudin-7 and assessed the effects of disruption of Cldn7 in intestines of mice. Methods We generated Cldn7−/− mice and examined their intestines by histology, molecular and cellular biology, and biochemistry approaches. We carried out gene silencing experiments in epithelial cell lines using small interfering (si)RNAs. Results The Cldn7−/− mice had severe intestinal defects that included mucosal ulcerations, epithelial cell sloughing, and inflammation. Intestines of Cldn7−/− mice produced significantly higher levels of cytokines, the NF-κB p65 subunit, and COX-2; they also upregulated expression of matrix metalloproteinases (MMPs)-3 and -7. siRNA in epithelial cell lines demonstrated that the increased expression of MMP-3 resulted directly from claudin-7 depletion, whereas that of MMP-7 resulted from inflammation. Electron microscopy analysis showed that intestines of Cldn7−/− mice had intercellular gaps below TJs and cell-matrix loosening. Deletion of Cldn7 reduced expression and altered localization of the integrin α2 subunit; disrupted formation of complexes of claudin-7, integrin α2, and claudin-1 that normally form in epithelial basolateral compartments of intestines. Conclusion In mice, claudin-7 has non-TJ functions, including maintenance of epithelial cell–matrix interactions and intestinal homeostasis.
The present communication reports the topotactic conversion of NiCo2O4 nanowires array on carbon cloth (NiCo2O4 NA/CC) into NiCo2S4 NA/CC, which is used as an efficient bifunctional electrocatalyst for water splitting with good durability and superior activity in 1.0 M KOH. This NiCo2S4 NA/CC electrode produces 100 mA cm(-2) at an overpotential of 305 mV for hydrogen evolution and 100 mA cm(-2) at an overpotential of 340 mV for oxygen evolution. To afford a 10 mA cm(-2) water-splitting current, the alkaline water electrolyzer made from NiCo2S4 NA/CC needs a cell voltage of 1.68 V, which is 300 mV less than that for NiCo2O4 NA/CC, and has good stability.
The classical adherens junction that holds epithelial cells together consists of a protein complex in which members of the cadherin family linked to various catenins are the principal components. δ-catenin is a mammalian brain protein in the Armadillo repeat superfamily with sequence similarity to the adherens junction protein p120ctn. We found that δ-catenin can be immunoprecipitated as a complex with other components of the adherens junction, including cadherin and β-catenin, from transfected cells and brain. The interaction with cadherin involves direct contact within the highly conserved juxtamembrane region of the COOH terminus, where p120ctn also binds. In developing mouse brain, staining with δ-catenin antibodies is prominent towards the apical boundary of the neuroepithelial cells in the ventricular zone. When transfected into Madin-Darby canine kidney (MDCK) epithelial cells δ-catenin colocalized with cadherin, p120ctn, and β-catenin. The Arm domain alone was sufficient for achieving localization and coimmunoprecipitation with cadherin. The ectopic expression of δ-catenin in MDCK cells altered their morphology, induced the elaboration of lamellipodia, interfered with monolayer formation, and increased scattering in response to hepatocyte growth factor treatment. We propose that δ-catenin can regulate adhesion molecules to implement the organization of large cellular arrays necessary for tissue morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.