Biochar is a kind of organic matter that can be added into the soil as a soil amendment to improve its quality. What are the effects of using biochar on purple soil and soybeans? Can the use of biochar reduce the use of fertilizers? This is our concern. Therefore, we carried out this study. The objectives of our study were to evaluate the effects of biochar, inorganic and organic fertilizer application on plant growth, chlorophyll content, photosynthetic gas exchange, and yield of soybean as well as fertility and microbial community in purple soil, and to appraise the possible reduction rate of inorganic fertilizer under the biochar application. A pot experiment was conducted with three levels of biochar, two levels of inorganic fertilizer, and two levels of organic fertilizer in a randomized complete block. The results indicated that the low rate of biochar together with half rate of inorganic fertilizer and organic fertilizer increased the plant growth of soybean. Meanwhile, the chlorophyll content, root growth, and yield of soybean were increased by 16.61, 197.73, and 96.7%, respectively, with biochar compared with no biochar. The high rate of biochar with half rate of inorganic fertilizer and organic fertilizer can promote the exchange of photosynthetic gas in soybean, and the photosynthetic rate increased by 45.25% compared with the blank control. At the full pod stage, the nitrogen content, phosphorus content, and potassium content of the whole plant under the high rate of biochar were 28.35, 13.65, and 28.78%, respectively, higher than that of the blank control. The application of biochar increased nitrogen, phosphorus, and potassium uptake of soybean. The high rate of biochar with half rate of inorganic fertilizer and organic fertilizer can improve soil nutrient content and soil microbial community. Compared with no biochar treatments, total organic carbon (TOC) increased by 740.28%, and cation exchange capacity (CEC) increased by 54.17%. Phospholipid fatty acid (PLFA) increased by 65.22%, and all kinds of soil microorganisms increased to varying degrees. In conclusion, the application of biochar can reduce the use of organic and inorganic fertilizers, improve the agronomic traits and yield of soybean, and play a positive role in soil nutrients and soil microorganisms.
Biochar is a kind of organic matter that can be added into soil to improve soil quality. To study the effect of biochar combined with organic and inorganic fertilizers on rapeseed growth and purple soil fertility and microbial community, a completely randomized block design was designed with three levels of biochar (B0: no biochar, B1: low-rate biochar, B2: high-rate biochar); two levels of inorganic fertilizers (F1: low-rate inorganic fertilizer; F2: high-rate inorganic fertilizer); and two levels of organic fertilizers (M1: no organic fertilizer; M2: with organic fertilizer). All combinations were repeated three times. The combined application of biochar and organic and inorganic fertilizers could improve soil pH, soil fertility and soil microbial community richness: The pH of B1F2M1 increased 0.41 compared with the control, the nitrogen, phosphorus and potassium content increased by 103.95, 117.88, and 99.05%. Meanwhile, soil microbial community richness was also improved. Our research showed that biochar could promote the Nutrient Uptake of rapeseed, and the combined application of biochar with organic and inorganic fertilizers could improve soil fertility and increase microbial diversity. Low-rate biochar combined with organic fertilizer and low-rate inorganic fertilizer was the most suitable application mode in rapeseed production in purple soil area of Southwest China.
Background Biochar is one kind of organic matter that can be added into soil as a soil amendment to improve its quality. To study the effect of biochar addition combined with organic and inorganic fertilizers on growth and fertility and microbial community in purple soil, a completely randomized block design was designed with three levels of biochar [B0: no biochar, B1: low-rate biochar (35 t/ha) , B2: high-rate biochar (50 t/ha)]; two levels of inorganic fertilizers [F1: low-rate inorganic fertilizer (30 kg/ha N, 87.5 kg/ha P2O5 and 60 kg/ha K2O); F2: high-rate inorganic fertilizer (60 kg/ha N, 175 kg/ha P2O5 and 120 kg/ha K2O)]; and two levels of organic fertilizers [M1: no organic fertilizer; M2: with organic fertilizer (4.5 t/ha)]. Results With the application of biochar, the plant height and stem diameter of rapeseed were increased by 6.15%-9.80% and 16.37%-20.11%, respectively. The photosynthetic capacity increased by 20.25% to 35.83%, and the yield increased by 16.40% to 19.11%, respectively. It also promoted the absorption and utilization of nitrogen, phosphorus and potassium by rapeseed to varying degrees. At the same time, the combined application of biochar and organic and inorganic fertilizers could improve soil pH, nitrogen, phosphorus and potassium content and soil microbial community richness: The pH of B1F2M1 increased 0.41 compared with the control, the nitrogen, phosphorus and potassium content in the soil increased by 103.95%, 117.88% and 99.05%, respectively. Meanwhile, soil microbial community richness was also improved. Conclusions Our research showed that biochar could promote the growth and development of rapeseed, and the combined application of biochar with organic and inorganic fertilizers could improve soil fertility and increase microbial diversity. Low-rate biochar combined with organic fertilizer and low-rate inorganic fertilizer was the most suitable application mode in rapeseed production in purple soil area of Southwest China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.