Abstract-The task of recovering three-dimensional (3-D) geometry from two-dimensional views of a scene is called 3-D reconstruction. It is an extremely active research area in computer vision. There is a large body of 3-D reconstruction algorithms available in the literature. These algorithms are often designed to provide different tradeoffs between speed, accuracy, and practicality. In addition, even the output of various algorithms can be quite different. For example, some algorithms only produce a sparse 3-D reconstruction while others are able to output a dense reconstruction. The selection of the appropriate 3-D reconstruction algorithm relies heavily on the intended application as well as the available resources. The goal of this paper is to review some of the commonly used motion-parallax-based 3-D reconstruction techniques and make clear the assumptions under which they are designed. To do so efficiently, we classify the reviewed reconstruction algorithms into two large categories depending on whether a prior calibration of the camera is required. Under each category, related algorithms are further grouped according to the common properties they share.
This paper demonstrates that microwave enhanced thermal decontamination of oil contaminated waste is a potentially important and highly efficiency approach to achieving the required environmental discharge limit. Numerical simulation of microwave thermal decontamination of oil contaminated wastes within an applicator known to support high electric field strengths was used to assess the influence of electric field and power loss density distributions on oil removal from the waste materials. It was found during this study that the water content plays the most important role in oil removal. As the microwave receptors within the material matrix, water molecules absorbed the bulk of the applied microwave energy. This energy was subsequently transferred to the oil in the form of heat, and was shown to cause thermal desorption. The boiling point of oil can also be reduced when it is mixed with water, since free water is beneficial to uniform heating, whilst bound water has a significant effect on the latter stages of oil removal. The experimental and simulation results suggest that the lowest residual oil levels were achieved when the sample material had a high dielectric loss factor and was placed in the position of maximum electric field strength. The cost of using a microwave technique for the remediation of oily waste can be up to 20 times lower than conventional heating.
For important camera calibration in the field of computer vision, a new target form, namely, a grid spherical target (GST) that is different from the spherical target, is proposed. The GST has advantages of spherical and checkerboard targets because of the grid on the sphere. And the latitude and longitude circles and the intersection points between latitude and longitude circles on the GST are used to calibrate the camera. Firstly, the Image of Absolute Conic should be obtained using the elliptic curves of latitude and longitude circles on the GST in the images. After obtaining the initial intrinsic and extrinsic parameters of the camera using the Image of Absolute Conic, optimum solutions of the intrinsic and extrinsic parameters are solved through nonlinear optimization by using the latitude circles and the intersection points of the latitude and longitude lines. Finally, the effectiveness of the GST-based method is proven in simulation and physical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.