[reaction: see text] A novel total synthesis of 3',5'-C-branched uridine azido acid has been accomplished using stereoselective aldehyde alkynylation, Ireland-Claisen rearrangement, and iodolactonization as the key reactions. Compared to traditional routes that start from carbohydrates, the present methodology is more efficient, flexible for future optimization, and provides access to both enantiomers of the products. Because the key chemistry does not involve the 3'- and 5'-C substituents, our route is a general approach to 3',5'-C alkyl nucleoside analogues.
[reaction: see text] A new, efficient, and general asymmetric synthesis of enantiomerically pure trans-3,4-dialkyl-gamma-lactones has been developed. The key steps are (1) copper-catalyzed three-component coupling of chiral amine, aldehyde, and alkyne, (2) acyl-Claisen rearrangement, and (3) iodolactonization. The products, chiral gamma-lactones, are versatile synthetic intermediates and structural units of natural products and modified nucleosides.
Total Synthesis of 3',5'-C-Branched Nucleosides. -A novel route to title nucleosides, in particular nucleoside (IX), is presented. Key reactions are the aldehyde alkynylation to give propargyl alcohol (III), and the one-pot Ireland-Claisen rearrangement/iodolactonization reactions to give the desired trans-lactone (VIII). The cis-lactone (VII), also formed in remarkable amounts as by-product, can be isomerized into the trans-isomer (VIII). The racemic route can be performed as asymmetric variant, as is demonstrated by preparation of nonracemic propargyl alcohol (S)-(III) from alkyne (I) and aldehyde (II) in the presence of zinc triflate and optically active N-methylephedrine. -(ROZNERS*, E.; XU, Q.; Org. Lett. 5 (2003) 21, 3999-4001; Dep. Chem., Northeast. Univ.,
Recent discovery of RNA interference has reinvigorated the interest in chemically modified RNA. Chemical approaches may be used to optimize properties of small interfering RNAs, such as thermal stability, cellular delivery, in vivo half-life, and pharmacokinetics. From this perspective, amides as neutral and hydrophobic internucleoside linkages in RNA are highly interesting modifications that so far have not been tested in RNA interference. Amides are remarkably good mimics of the phosphodiester backbone of RNA and can be prepared using a relatively straightforward peptide coupling chemistry. The synthetic challenge that has hampered the progress in this field has been preparation of monomeric building blocks for such couplings, the nucleoside amino acid equivalents. Herein, we report two synthetic routes to enantiomerically pure 3'-aminomethyl-5'-carboxy-3',5'-dideoxy nucleosides, monomers for preparation of amide-modified RNA. Modification of uridine, a representative of natural nucleosides, using nitroaldol chemistry gives the target amino acid in 16 steps and 9% overall yield. The alternative synthesis starting from glucose is somewhat less efficient (17 steps and 6% yield of 3'-azidomethyl-5'-carboxy-3',5'-dideoxy uridine), but provides easier access to modified nucleosides having other heterocyclic bases. The syntheses developed herein will allow preparation of amide-modified RNA analogues and exploration of their potential as tools and probes for RNA interference, fundamental biochemistry, and bio- and nanotechnology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.