Lycopene, a potent antioxidant, has been widely used in the fields of pharmaceuticals, nutraceuticals, and cosmetics. However, the production of lycopene extracted from natural sources is far from meeting the demand. Consequently, synthetic biology and metabolic engineering have been employed to develop microbial cell factories for lycopene production. Due to the advantages of rapid growth, complete genetic background, and a reliable genetic operation technique, Escherichia coli has become the preferred host cell for microbial biochemicals production. In this review, the recent advances in biological lycopene production using engineered E. coli strains are summarized: First, modification of the endogenous MEP pathway and introduction of the heterogeneous MVA pathway for lycopene production are outlined. Second, the common challenges and strategies for lycopene biosynthesis are also presented, such as the optimization of other metabolic pathways, modulation of regulatory networks, and optimization of auxiliary carbon sources and the fermentation process. Finally, the future prospects for the improvement of lycopene biosynthesis are also discussed.
Background
Sesquiterpenes are designated as a large class of plant-derived natural active compounds, which have wide applications in industries of energy, food, cosmetics, medicine and agriculture. Neither plant extraction nor chemical synthesis can meet the massive market demands and sustainable development goals. Biosynthesis in microbial cell factories represents an eco-friendly and high-efficient way. Among several microorganisms, Saccharomyces cerevisiae exhibited the potential as a chassis for bioproduction of various sesquiterpenes due to its native mevalonate pathway. However, its inefficient nature limits biosynthesis of diverse sesquiterpenes at industrial grade.
Results
Herein, we exploited an artificial synthetic malonic acid-acetoacetyl-CoA (MAAC) metabolic pathway to switch central carbon metabolic flux for stable and efficient biosynthesis of sesquiterpene-based high-density biofuel precursor in S. cerevisiae. Through investigations at transcription and metabolism levels, we revealed that strains with rewired central metabolism can devote more sugars to β-caryophyllene production. By optimizing the MVA pathway, the yield of β-caryophyllene from YQ-4 was 25.8 mg/L, which was 3 times higher than that of the initial strain YQ-1. Strain YQ-7 was obtained by introducing malonic acid metabolic pathway. Combing the optimized flask fermentation process, the target production boosted by about 13-fold, to 328 mg/L compared to that in the strain YQ-4 without malonic acid metabolic pathway.
Conclusion
This designed MAAC pathway for sesquiterpene-based high-density biofuel precursor synthesis can provide an impressive cornerstone for achieving a sustainable production of renewable fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.