Metacognition is the capacity to introspectively monitor and control one's own cognitive processes. Previous anatomical and functional neuroimaging findings implicated the important role of the precuneus in metacognition processing, especially during mnemonic tasks. However, the issue of whether this medial parietal cortex is a domain-specific region that supports mnemonic metacognition remains controversial. Here, we focally disrupted this parietal area with repetitive transcranial magnetic stimulation in healthy human participants of both sexes, seeking to ascertain its functional necessity for metacognition in memory versus perceptual decisions. Perturbing precuneal activity selectively impaired metacognitive efficiency of temporal-order memory judgment, but not perceptual discrimination. Moreover, the correlation in individuals' metacognitive efficiency between domains disappeared when the precuneus was perturbed. Together, these findings provide evidence reinforcing the notion that the precuneal region plays an important role in mediating metacognition of episodic memory retrieval. Theories on the neural basis of metacognition have thus far been largely centered on the role of the prefrontal cortex. Here we refined the theoretical framework through characterizing a unique precuneal involvement in mnemonic metacognition with a noninvasive but inferentially powerful method: transcranial magnetic stimulation. By quantifying metacognitive efficiency across two distinct domains (memory vs perception) that are matched for stimulus characteristics, we reveal an instrumental role of the precuneus in mnemonic metacognition. This causal evidence corroborates ample clinical reports that parietal lobe lesions often produce inaccurate self-reports of confidence in memory recollection and establish the precuneus as a nexus for the introspective ability to evaluate the success of memory judgment in humans.
The prospective bias is a salient feature of mind wandering in healthy adults, yet little is known about the temporal focus of children’s mind wandering. In the present study, (I) we developed the temporal focus of mind wandering questionnaire for school-age children (TFMWQ-C), a 12-item scale with good test–retest reliability and construct validity. (II) The criterion validity was tested by thought sampling in both choice reaction time task and working memory task. A positive correlation was found between the temporal focus measured by the questionnaire and the one adopted during task-unrelated thoughts (TUTs) by thought sampling probes, especially in the trait level of future-oriented mind wandering. At the same time, children who experienced more TUTs tended to show worse behavioral performance during tasks. (III) The children in both tasks experienced more future-oriented TUTs than past-oriented ones, which was congruent with the results observed in adults; however, in contrast with previous research on adults, the prospective bias was not influenced by task demands. Together these results indicate that the prospective bias of mind wandering has emerged since the school-age (9∼13 years old), and that the relationship between mental time travel (MTT) during mind wandering and the use of cognitive resources differs between children and adults. Our study provides new insights into how this interesting feature of mind wandering may adaptively contribute to the development of children’s MTT.
Background: A recent virtual-lesion study using inhibitory repetitive transcranial magnetic stimulation (rTMS) confirmed the causal behavioral relevance of the precuneus in the evaluation of one's own memory performance (aka mnemonic metacognition).Objective: This study's goal is to elucidate how these TMS-induced neuromodulatory effects might relate to the neural correlates and be modulated by individual anatomical profiles in relation to meta-memory.Methods: In a within-subjects design, we assessed the impact of 20-min rTMS over the precuneus, compared to the vertex, across three magnetic resonance imaging (MRI) neuroprofiles on 18 healthy subjects during a memory versus a perceptual task.Results: Task-based functional MRI revealed that BOLD signal magnitude in the precuneus is associated with variation in individual meta-memory efficiency, and such correlation diminished significantly following TMS targeted at the precuneus. Moreover, individuals with higher resting-state functional connectivity (rs-fcMRI) between the precuneus and the hippocampus, or smaller grey matter volume in the stimulated precuneal region exhibit considerably higher vulnerability to the TMS effect. These effects were not observed in the perceptual domain. Conclusion:We provide compelling evidence in outlining a possible circuit encompassing the precuneus and its mnemonic midbrain neighbor the hippocampus at the service of realizing our meta-awareness during memory recollection of episodic details.
Metacognition as the capacity of monitoring one's own cognition operates across domains.Here, we addressed whether metacognition in different cognitive domains rely on common or distinct neural substrates with combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) techniques. After acquiring DTI and resting-state fMRI data, we asked participants to perform a temporal-order memory task and a perceptual discrimination task, followed by trial-specific confidence judgments. DTI analysis revealed that the structural integrity (indexed by fractional anisotropy) in the anterior portion of right superior longitudinal fasciculus (SLF) was associated with both perceptual and mnemonic metacognitive abilities. Using perturbed mnemonic metacognitive scores produced by inhibiting the precuneus using TMS, the mnemonic metacognition scores did not correlate with individuals' SLF structural integrity anymore, revealing the relevance of this tract in memory metacognition. In order to further verify the involvement of several cortical regions connected by SLF, we took the TMS-targeted precuneus region as a seed in a functional connectivity analysis and found the functional connectivity between precuneus and two SLF-connected regions (inferior parietal cortex and precentral gyrus) differentially mediated mnemonic but not perceptual metacognition performance. These results illustrate the importance of SLF and a putative white-matter grey-matter circuitry that supports human metacognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.