In computer-aided design (CAD) and process planning (CAPP), feature recognition is an essential task which identifies the feature type of a 3D model for computer-aided manufacturing (CAM). In general, traditional rule-based feature recognition methods are computationally expensive, and dependent on surface or feature types. In addition, it is quite challenging to design proper rules to recognise intersecting features. Recently, a learning-based method, named FeatureNet, has been proposed for both single and multi-feature recognition. This is a general purpose algorithm which is capable of dealing with any type of features and surfaces. However, thousands of annotated training samples for each feature are required for training to achieve a high single feature recognition accuracy, which makes this technique difficult to use in practice. In addition, experimental results suggest that multi-feature recognition part in this approach works very well on intersecting features with small overlapping areas, but may fail when recognising highly intersecting features. To address the above issues, a deep learning framework based on multiple sectional view (MSV) representation named MsvNet is proposed for feature recognition. In the MsvNet, MSVs of a 3D model are collected as the input of the deep network, and the information achieved from different views are combined via the neural network for recognition. In addition to MSV representation, some advanced learning strategies (e.g. transfer learning, data augmentation) are also employed to minimise the number of training samples and training time. For multi-feature recognition, a novel view-based feature segmentation and recognition algorithm is presented. Experimental results demonstrate that the proposed approach can achieve the state-of-the-art single feature performance on the FeatureNet dataset with only a very small number of training samples (e.g. 8-32 samples for each feature), and outperforms the state-of-the-art learning-based multi-feature recognition method in terms of recognition performances.
Build orientation determination is one of the essential process planning tasks in additive manufacturing since it has crucial effects on the part quality, post-processing, build time and cost, etc. This paper introduces a method based on fuzzy multiattribute decision making to determine the optimal build orientation from a finite set of alternatives. The determination process includes two major steps. In the first step, attributes that are considered in the determination and heterogeneous relationships of which are firstly identified. A fuzzy decision matrix is then constructed and normalised based on the values of the identified attributes, which are quantified by a set of fuzzy numbers. In the second step, two fuzzy number aggregation operators are developed to aggregate the fuzzy information in the normalised matrix. By comparing the aggregation results, a ranking of all alternative build orientations can then be generated. Two determination examples are used to demonstrate the working process of the proposed method. Qualitative and quantitative comparisons between the proposed method and other methods are carried out to demonstrate its feasibility, effectiveness, and advantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.