A miniature precision glass encapsulated electrical connectors introduced by glass powder and metal wires through a special complicated process. Aiming at the porosity defects on the surface, a defect detection algorithm propose based on threshold segmentation and feature extraction. Pre-operation, global threshold segmentation processing and feature extraction (based on area, circularity aspect ratio, compactness, and contour length) are preformed to detect the defects. Experimental results show that the algorithm can accurately identify porosities defects.
Micro-precision Glass Insulated Terminals (referred to as glass terminals) are the core components used in precision electronic equipment and are often used for electrical connections between modules. As a glass terminal, its quality has a great influence on the performance of precision electronic equipment. Due to the limitations of materials and production processes, some of the glass terminals produced have defects, such as missing blocks, pores and cracks. At present, most of the defect detection of glass terminals is done by manual inspection, and rapid detection easily causes eye fatigue, so it is difficult to ensure product quality and production efficiency. The traditional defect detection technology is difficult to effectively detect the very different defects of the glass terminal. Therefore, this paper proposes to use deep learning technology to detect missing blocks. First, preprocess the sample pictures of the missing block defects of the glass terminal, and then train the improved Faster Region-CNN deep learning network for defect detection. According to the test results, the accuracy of the algorithm in detecting missing defects in the glass terminal is as high as 93.52%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.