Background In contrast to the large and increasing number of patients with stroke, clinical rehabilitation resources cannot meet their rehabilitation needs. Especially for those discharged, ways to carry out effective rehabilitation training without the supervision of physicians and receive guidance from physicians remain urgent problems to be solved in clinical rehabilitation and have become a research hot spot at home and abroad. At present, there are many studies on home rehabilitation training based on wearable devices, Kinect, among others, but these have disadvantages (eg, complex systems, high price, and unsatisfactory rehabilitation effects). Objective This study aims to design a remote intelligent rehabilitation training system based on wearable devices and human-computer interaction training tasks, and to evaluate the effectiveness and safety of the remote rehabilitation training system for nonphysician-supervised motor rehabilitation training of patients with stroke through a clinical trial study. Methods A total of 120 inpatients with stroke having limb motor dysfunction were enrolled via a randomized, parallel-controlled method in the rehabilitation institutions, and a 3-week clinical trial was conducted in the rehabilitation hall with 60 patients in the experimental group and 60 in the control group. The patients in the experimental group used the remote rehabilitation training system for rehabilitation training and routine clinical physical therapy (PT) training and received routine drug treatment every day. The patients in the control group received routine clinical occupational therapy (OT) training and routine clinical PT training and routine drug treatment every day. At the beginning of the training (baseline) and after 3 weeks, the Fugl-Meyer Motor Function Rating scale was scored by rehabilitation physicians, and the results were compared and analyzed. Results Statistics were performed using SAS software (version 9.4). The total mean Fugl-Meyer score improved by 11.98 (SD 8.46; 95% CI 9.69-14.27) in the control group and 17.56 (SD 11.65; 95% CI 14.37-20.74) in the experimental group, and the difference between the 2 groups was statistically significant (P=.005). Among them, the mean Fugl-Meyer upper extremity score improved by 7.45 (SD 7.24; 95% CI 5.50-9.41) in the control group and 11.28 (SD 8.59; 95% CI 8.93-13.62) in the experimental group, and the difference between the 2 groups was statistically significant (P=.01). The mean Fugl-Meyer lower extremity score improved by 4.53 (SD 4.42; 95% CI 3.33-5.72) in the control group and 6.28 (SD 5.28; 95% CI 4.84-7.72) in the experimental group, and there was no significant difference between the 2 groups (P=.06). The test results showed that the experimental group was better than the control group, and that the patients’ motor ability was improved. Conclusions The remote rehabilitation training system designed based on wearable devices and human-computer interaction training tasks can replace routine clinical OT training. In the future, through medical device registration certification, the system will be used without the participation of physicians or therapists, such as in rehabilitation training halls, and in remote environments, such as communities and homes. Trial Registration Chinese Clinical Trial Registry ChiCTR2200061310; https://tinyurl.com/34ka2725
In order to solve the shortcomings of the current clinical scale assessment for stroke patients, such as excessive time consumption, strong subjectivity, and coarse grading, this study designed an intelligent rehabilitation assessment system based on wearable devices and a machine learning algorithm and explored the effectiveness of the system in assessing patients’ rehabilitation outcomes. The accuracy and effectiveness of the intelligent rehabilitation assessment system were verified by comparing the consistency and time between the designed intelligent rehabilitation assessment system scores and the clinical Fugl–Meyer assessment (FMA) scores. A total of 120 stroke patients from two hospitals participated as volunteers in the trial study, and statistical analyses of the two assessment methods were performed. The results showed that the R2 of the total score regression analysis for both methods was 0.9667, 95% CI 0.92–0.98, p < 0.001, and the mean of the deviation was 0.30, 95% CI 0.57–1.17. The percentages of deviations/relative deviations falling within the mean ± 1.96 SD of deviations/relative deviations were 92.50% and 95.83%, respectively. The mean time for system assessment was 35.00% less than that for clinician assessment, p < 0.05. Therefore, wearable intelligent machine learning rehabilitation assessment has a strong and significant correlation with clinician assessment, and the time spent is significantly reduced, which provides an accurate, objective, and effective solution for clinical rehabilitation assessment and remote rehabilitation without the presence of physicians.
IntroductionUpper limb motor impairments after stroke cause patients partial or total loss of the capability of performing daily living, working, and social activities, which significantly affects the quality of life (QoL) of patients and brings a heavy burden to their families and society. As a non-invasive neuromodulation technique, transcranial magnetic stimulation (TMS) can act not only on the cerebral cortex, but also on peripheral nerves, nerve roots, and muscle tissues. Previous studies have shown that magnetic stimulation on the cerebral cortex and peripheral tissues has a positive effect on the recovery of upper limb motor function after stroke, however, few studies have reported the combination of the two.ObjectiveThis study was to investigate whether high frequency repetitive transcranial magnetic stimulation (HF-rTMS) combined with cervical nerve root magnetic stimulation more effectively ameliorates upper limb motor function in stroke patients. We hypothesized that the combination of the two can achieve a synergistic effect and further promotes functional recovery.MethodsSixty patients with stroke were randomly divided into four groups and received real or sham rTMS stimulation and cervical nerve root magnetic stimulation consecutively before other therapies, once daily over five fractions per week for a total of 15 times. We evaluated the upper limb motor function and activities of daily living of the patients at the time of pre-treatment, post-treatment, and 3-month follow up.ResultsAll patients completed study procedures without any adverse effects. The upper limb motor function and activities of daily living improved in patients of each group were improved after treatment (post 1) and 3 months after treatment (post 2). Combination treatment was significantly better than single treatments alone or sham.ConclusionBoth rTMS and cervical nerve root magnetic stimulation effectively promoted upper limb motor recovery in patients with stroke. The protocol combining the two is more beneficial for motor improvement and patients can easily tolerate it.Clinical trial registrationhttps://www.chictr.org.cn/, identifier ChiCTR2100048558.
BACKGROUND In contrast to the large and increasing number of patients with stroke, clinical rehabilitation resources cannot meet their rehabilitation needs. Especially for those discharged, ways to carry out effective rehabilitation training without the supervision of physicians and receive guidance from physicians remain urgent problems to be solved in clinical rehabilitation and have become a research hot spot at home and abroad. At present, there are many studies on home rehabilitation training based on wearable devices, Kinect, among others, but these have disadvantages (eg, complex systems, high price, and unsatisfactory rehabilitation effects). OBJECTIVE This study aims to design a remote intelligent rehabilitation training system based on wearable devices and human-computer interaction training tasks, and to evaluate the effectiveness and safety of the remote rehabilitation training system for nonphysician-supervised motor rehabilitation training of patients with stroke through a clinical trial study. METHODS A total of 120 inpatients with stroke having limb motor dysfunction were enrolled via a randomized, parallel-controlled method in the rehabilitation institutions, and a 3-week clinical trial was conducted in the rehabilitation hall with 60 patients in the experimental group and 60 in the control group. The patients in the experimental group used the remote rehabilitation training system for rehabilitation training and routine clinical physical therapy (PT) training and received routine drug treatment every day. The patients in the control group received routine clinical occupational therapy (OT) training and routine clinical PT training and routine drug treatment every day. At the beginning of the training (baseline) and after 3 weeks, the Fugl-Meyer Motor Function Rating scale was scored by rehabilitation physicians, and the results were compared and analyzed. RESULTS Statistics were performed using SAS software (version 9.4). The total mean Fugl-Meyer score improved by 11.98 (SD 8.46; 95% CI 9.69-14.27) in the control group and 17.56 (SD 11.65; 95% CI 14.37-20.74) in the experimental group, and the difference between the 2 groups was statistically significant (<i>P</i>=.005). Among them, the mean Fugl-Meyer upper extremity score improved by 7.45 (SD 7.24; 95% CI 5.50-9.41) in the control group and 11.28 (SD 8.59; 95% CI 8.93-13.62) in the experimental group, and the difference between the 2 groups was statistically significant (<i>P</i>=.01). The mean Fugl-Meyer lower extremity score improved by 4.53 (SD 4.42; 95% CI 3.33-5.72) in the control group and 6.28 (SD 5.28; 95% CI 4.84-7.72) in the experimental group, and there was no significant difference between the 2 groups (<i>P</i>=.06). The test results showed that the experimental group was better than the control group, and that the patients’ motor ability was improved. CONCLUSIONS The remote rehabilitation training system designed based on wearable devices and human-computer interaction training tasks can replace routine clinical OT training. In the future, through medical device registration certification, the system will be used without the participation of physicians or therapists, such as in rehabilitation training halls, and in remote environments, such as communities and homes. CLINICALTRIAL Chinese Clinical Trial Registry ChiCTR2200061310; https://tinyurl.com/34ka2725
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.