Ni-Al2O3 nano-composite coating was prepared on the ASP30 powder metallurgical steel surface for semiconductor encapsulation mould by using electrodeposition method. Effects of Al2O3 contents on microstructure, microhardness and wear resistance of composite coating were analyzed. Results demonstrate that due to refined crystalline strengthening, dispersion strengthening and high-density dislocation strengthening of Al2O3 nanoparticles in uniform distribution, Ni-Al2O3 nano-composite coating has more compact structure and smaller grain size compared to the pure Ni coating, which are conducive to increase microhardness and wear resistance of the coating significantly. Neither too low nor too high Al2O3 contents is beneficial to improve microhardness and wear resistance of composite coating. The pure Ni coating has serious adhesion wearing, while the nano-composite coating with the moderate Al2O3 content has the best performance and it mainly has mild abrasive wear, accompanied with some adhesion wearing. Relatively serious adhesion wearing occurs on the wear surface of pure Ni coating. Differently, wearing surface of Ni-Al2O3 nano-composite coating is mainly dominated by mild abrasive wear, accompanied with some adhesion wearing. Neither too low and too high Al2O3 content is conducive to improve microhardness and wear resistance of composite coating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.