Particle transport in fully-developed turbulent channel flow has been investigated using large eddy simulation ͑LES͒ of the incompressible Navier-Stokes equations. Calculations were performed at channel flow Reynolds numbers, Re , of 180 and 644 ͑based on friction velocity and channel half width͒; subgrid-scale stresses were parametrized using the Lagrangian dynamic eddy viscosity model. Particle motion was governed by both drag and gravitational forces and the volume fraction of the dispersed phase was small enough such that particle collisions were negligible and properties of the carrier flow were not modified. Material properties of the particles used in the simulations were identical to those in the DNS calculations of Rouson and Eaton ͓Proceedings of the 7th Workshop on Two-Phase Flow Predictions ͑1994͔͒ and experimental measurements of Kulick et al. ͓J. Fluid Mech. 277, 109 ͑1994͔͒. Statistical properties of the dispersed phase in the channel flow at Re ϭ180 are in good agreement with the DNS; reasonable agreement is obtained between the LES at Re ϭ644 and experimental measurements. It is shown that the LES correctly predicts the greater streamwise particle fluctuation level relative to the fluid and increasing anisotropy of velocity fluctuations in the dispersed phase with increasing values of the particle time constant. Analysis of particle fluctuation levels demonstrates the importance of production by mean gradients in the particle velocity as well as the fluid-particle velocity correlation. Preferential concentration of particles by turbulence is also investigated. Visualizations of the particle number density field near the wall and along the channel centerline are similar to those observed in DNS and the experiments of Fessler et al. ͓Phys. Fluids 6, 3742 ͑1994͔͒. Quantitative measures of preferential concentration are also in good agreement with Fessler et al. ͓Phys. Fluids 6, 3742 ͑1994͔͒.
Particle transport in a three-dimensional, temporally evolving mixing layer has been calculated using large eddy simulation of the incompressible Navier-Stokes equations. The initial fluid velocity field was obtained from a separate simulation of fully developed turbulent channel flow. The momentum thickness Reynolds number ranged from 710 in the initial field to 4460 at the end of the calculation. Following a short development period, the layer evolves nearly self-similarly. Fluid velocity statistics are in good agreement with both the direct numerical simulation results of Rogers and Moser (1994) and experimental measurements of Bell and Mehta (1990). Particles were treated in a Lagrangian manner by solving the equation of motion for an ensemble of 20,000 particles. The particles have the same material properties as in the experiments of Hishida et al. (1992), i.e., glass beads with diameters of 42, 72, and 135 μm. Particle motion is governed by drag and gravity, particle-particle collisions are neglected, and the coupling is from fluid to particles only. In general, the mean and fluctuating particle velocities are in reasonable agreement with the experimental measurements of Hishida et al. (1992). Consistent with previous studies, the Stokes number (St) corresponding to maximum dispersion increases as the flow evolves when defined using a fixed fluid timescale. Definition of the Stokes number using the time-dependent vorticity thickness, however, shows a maximum in dispersion throughout the simulation for St ≈ 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.