Bio‐sourced epoxy resins from resorcinol diglycidyl ether (RDGE) have been obtained by using cationic photopolymerization under UV‐light exposure. The photoinduced bulk resin samples were characterized by three‐point bending tests, dynamic mechanical analysis, as well as differential scanning calorimetry analysis, and thermogravimetric analysis. The influence of processing parameters, that is, reactant contents, UV irradiation time, and postcuring conditions on the thermomechanical behavior has been pointed out. For instance, the flexural modulus of the most performing materials reaches 4.1 GPa with the flexural strength and the glass‐transition temperature of around 105 MPa and 99°C, respectively. Interestingly, our optimized protocol has led to the synthesis of new bio‐based materials with more valuable thermal and mechanical properties than those of thermocured materials obtained from petroleum‐based commercial epoxy resins. Focus has been given on processing parameters to optimize the final properties of the material and to open an interesting alternative for sustainable building materials.
This study has developed novel fully bio-based resorcinol epoxy resin–diatomite composites by a green two-stage process based on the living character of the cationic polymerization. This process comprises the photoinitiation and subsequently the thermal dark curing, enabling the obtaining of thick and non-transparent epoxy-diatomite composites without any solvent and amine-based hardeners. The effects of the diatomite content and the compacting pressure on microstructural, thermal, mechanical, acoustic properties, as well as the flame behavior of such composites have been thoroughly investigated. Towards the development of sound absorbing and flame-retardant construction materials, a compromise among mechanical, acoustic and flame-retardant properties was considered. Consequently, the composite obtained with 50 wt.% diatomite and 3.9 MPa compacting pressure is considered the optimal composite in the present work. Such composite exhibits the enhanced flexural modulus of 2.9 MPa, a satisfying sound absorption performance at low frequencies with Modified Sound Absorption Average (MSAA) of 0.08 (for a sample thickness of only 5 mm), and an outstanding flame retardancy behavior with the peak of heat release rate (pHRR) of 109 W/g and the total heat release of 5 kJ/g in the pyrolysis combustion flow calorimeter (PCFC) analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.