In impedance control of hydraulic excavators the piston position and ram force of each hydraulic cylinder for the axis control of the boom, arm, and bucket can be determined. The problem is thus how to find the control voltage applied to the servovalves to track these commands to the hydraulic systems. This paper presents analytic, simulation and experimental results for controllers that have been developed in our laboratory to achieve force and position tracking of clectrohydraulic systems of a robotic mini-excavator. The systems with hydraulic cylinders as actuators are represented by a comprehensive model taking into account friction, nonlinearities, and uncertainties. A discontinuous observer is developed for estimating both piston velocity and disturbance force including friction. With an observer-based compensation for disturbance, tracking of the piston rain force and position is guaranteed using a robust sliding mode controller. The control signal consists of three components: equivalent control, switching control, and fuzzy control. High performance and strong robustness can be obtained as demonstrated by simulation and experiments performed on a hydraulically-actuated Komatsu PC05-7 robotic excavator. Promising results are reported, and issues relating to future work are discussed.
Tower crane is a multiple-input and multiple-output (MIMO) under-actuated system which is popularly used in both goods tranfering and constructing. In operating process, the loads ,which are transferred by tower crane, such as goods, material,…, are fluctuated. Fluctuation of load takes part of decreasing performance in goods transferring. In this paper, we propose a structure of PID to control tower crane to avoid this fluctuation of load. Simulation and Experimental results and demonstrate the success of PID algorithm in this research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.