Earth-abundant, nonprecious, and efficient electrocatalysts for effective hydrogen evolution reaction (HER) are crucial for future large-scale green energy production. Low-cost two-dimensional MXenes have been widely studied in energy-storage devices owing to their unique chemical and physical properties and have recently attracted scientists in the electrocatalysis field. Nevertheless, their electrocatalytic activity still remains unsatisfactory. Herein, we present a facile and general strategy using ammonia heat treatment to enhance the hydrogen evolution catalysis of Ti 3 C 2 T x MXenes by modification with a nitrogen heteroatom. Importantly, our approach is focused on revealing: (1) the contribution of all possible incorporated N species including Ti−N, N−H, and N in O−Ti−N, rather than considering only that of Ti−N x motifs as previously reported for N-doped MXene electrocatalysts, and their role in inducing a change in the electronic configuration of the as-prepared catalysts, which then leads to increased electrical conductivity and improved intrinsic catalytic reactivity; and (2) the importance of controlling the proper amount of N obtained at a suitable calcined temperature to assist the shift of the Gibbs free energy for hydrogen adsorption (ΔH ad *) approaching 0 eV (ideal value), as proved by the density functional theory. Moreover, experimental findings indicate that nitrogen-doped Ti 3 C 2 T x annealed at 600 °C shows superior improved HER electrocatalytic performance compared to pristine Ti 3 C 2 T x , with an onset potential of −30 mV and an overpotential as low as 198 at 10 mA cm −2 , as well as a much smaller Tafel slope of 92 mV dec −1 .
In this work, we proposed to combine oxalic acid and ferric ions in very low concentrations to create new, economic, and effective homogeneous photo-Fenton catalytic systems for the degradation of methylene blue. The effects of ferric concentration, H2C2O4 concentration, pH, and tert-butanol on the catalytic activity were also investigated. According to the experimental results, Fe3+ ions exhibited impressive catalytic performances in the presence of H2C2O4 at concentrations below type B (5.0 mg.l–1) from the Vietnam National Technical Regulation on Industrial Wastewater. Specifically, a ferric concentration of 3.0 mg.l–1, H2C2O4 concentration of 10–3 mol.l–1, and pH value of 3 were found to be the best conditions for MB degradation under UVA light. Furthermore, owing to a very low concentration of ferric ions, iron sludge formation can be avoided after wastewater treatment, which makes the photo-Fenton process suitable for practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.